BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 34655982)

  • 1. Tau in the brain interstitial fluid is fragmented and seeding-competent.
    Barini E; Plotzky G; Mordashova Y; Hoppe J; Rodriguez-Correa E; Julier S; LePrieult F; Mairhofer I; Mezler M; Biesinger S; Cik M; Meinhardt MW; Ercan-Herbst E; Ehrnhoefer DE; Striebinger A; Bodie K; Klein C; Gasparini L; Schlegel K
    Neurobiol Aging; 2022 Jan; 109():64-77. PubMed ID: 34655982
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conformation determines the seeding potencies of native and recombinant Tau aggregates.
    Falcon B; Cavallini A; Angers R; Glover S; Murray TK; Barnham L; Jackson S; O'Neill MJ; Isaacs AM; Hutton ML; Szekeres PG; Goedert M; Bose S
    J Biol Chem; 2015 Jan; 290(2):1049-65. PubMed ID: 25406315
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo microdialysis reveals age-dependent decrease of brain interstitial fluid tau levels in P301S human tau transgenic mice.
    Yamada K; Cirrito JR; Stewart FR; Jiang H; Finn MB; Holmes BB; Binder LI; Mandelkow EM; Diamond MI; Lee VM; Holtzman DM
    J Neurosci; 2011 Sep; 31(37):13110-7. PubMed ID: 21917794
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extracellular Vesicles Isolated from the Brains of rTg4510 Mice Seed Tau Protein Aggregation in a Threshold-dependent Manner.
    Polanco JC; Scicluna BJ; Hill AF; Götz J
    J Biol Chem; 2016 Jun; 291(24):12445-12466. PubMed ID: 27030011
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteopathic tau seeding predicts tauopathy in vivo.
    Holmes BB; Furman JL; Mahan TE; Yamasaki TR; Mirbaha H; Eades WC; Belaygorod L; Cairns NJ; Holtzman DM; Diamond MI
    Proc Natl Acad Sci U S A; 2014 Oct; 111(41):E4376-85. PubMed ID: 25261551
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amyloid-β and Tau Dynamics in Human Brain Interstitial Fluid in Patients with Suspected Normal Pressure Hydrocephalus.
    Herukka SK; Rummukainen J; Ihalainen J; von Und Zu Fraunberg M; Koivisto AM; Nerg O; Puli LK; Seppälä TT; Zetterberg H; Pyykkö OT; Helisalmi S; Tanila H; Alafuzoff I; Hiltunen M; Rinne J; Soininen H; Jääskeläinen JE; Leinonen V
    J Alzheimers Dis; 2015; 46(1):261-9. PubMed ID: 25720406
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Short Fibrils Constitute the Major Species of Seed-Competent Tau in the Brains of Mice Transgenic for Human P301S Tau.
    Jackson SJ; Kerridge C; Cooper J; Cavallini A; Falcon B; Cella CV; Landi A; Szekeres PG; Murray TK; Ahmed Z; Goedert M; Hutton M; O'Neill MJ; Bose S
    J Neurosci; 2016 Jan; 36(3):762-72. PubMed ID: 26791207
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure-based inhibitors halt prion-like seeding by Alzheimer's disease-and tauopathy-derived brain tissue samples.
    Seidler PM; Boyer DR; Murray KA; Yang TP; Bentzel M; Sawaya MR; Rosenberg G; Cascio D; Williams CK; Newell KL; Ghetti B; DeTure MA; Dickson DW; Vinters HV; Eisenberg DS
    J Biol Chem; 2019 Nov; 294(44):16451-16464. PubMed ID: 31537646
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tau Ser208 phosphorylation promotes aggregation and reveals neuropathologic diversity in Alzheimer's disease and other tauopathies.
    Xia Y; Prokop S; Gorion KM; Kim JD; Sorrentino ZA; Bell BM; Manaois AN; Chakrabarty P; Davies P; Giasson BI
    Acta Neuropathol Commun; 2020 Jun; 8(1):88. PubMed ID: 32571418
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In Vivo Microdialysis of Brain Interstitial Fluid for the Determination of Extracellular Tau Levels.
    Yamada K
    Methods Mol Biol; 2017; 1523():285-296. PubMed ID: 27975257
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of in vivo turnover of tau in a mouse model of tauopathy.
    Yamada K; Patel TK; Hochgräfe K; Mahan TE; Jiang H; Stewart FR; Mandelkow EM; Holtzman DM
    Mol Neurodegener; 2015 Oct; 10():55. PubMed ID: 26502977
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of tau prion seeding activity and strains from formaldehyde-fixed tissue.
    Kaufman SK; Thomas TL; Del Tredici K; Braak H; Diamond MI
    Acta Neuropathol Commun; 2017 Jun; 5(1):41. PubMed ID: 28587664
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tau exhibits unique seeding properties in globular glial tauopathy.
    Chung DC; Carlomagno Y; Cook CN; Jansen-West K; Daughrity L; Lewis-Tuffin LJ; Castanedes-Casey M; DeTure M; Dickson DW; Petrucelli L
    Acta Neuropathol Commun; 2019 Mar; 7(1):36. PubMed ID: 30845985
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heterotypic seeding of Tau fibrillization by pre-aggregated Abeta provides potent seeds for prion-like seeding and propagation of Tau-pathology in vivo.
    Vasconcelos B; Stancu IC; Buist A; Bird M; Wang P; Vanoosthuyse A; Van Kolen K; Verheyen A; Kienlen-Campard P; Octave JN; Baatsen P; Moechars D; Dewachter I
    Acta Neuropathol; 2016 Apr; 131(4):549-69. PubMed ID: 26739002
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of tau binding by gosuranemab.
    Sopko R; Golonzhka O; Arndt J; Quan C; Czerkowicz J; Cameron A; Smith B; Murugesan Y; Gibbons G; Kim SJ; Trojanowski JQ; Lee VMY; Brunden KR; Graham DL; Weinreb PH; Hering H
    Neurobiol Dis; 2020 Dec; 146():105120. PubMed ID: 32991997
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physiological clearance of tau in the periphery and its therapeutic potential for tauopathies.
    Wang J; Jin WS; Bu XL; Zeng F; Huang ZL; Li WW; Shen LL; Zhuang ZQ; Fang Y; Sun BL; Zhu J; Yao XQ; Zeng GH; Dong ZF; Yu JT; Hu Z; Song W; Zhou HD; Jiang JX; Liu YH; Wang YJ
    Acta Neuropathol; 2018 Oct; 136(4):525-536. PubMed ID: 30074071
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human tauopathy-derived tau strains determine the substrates recruited for templated amplification.
    Tarutani A; Miyata H; Nonaka T; Hasegawa K; Yoshida M; Saito Y; Murayama S; Robinson AC; Mann DMA; Tomita T; Hasegawa M
    Brain; 2021 Sep; 144(8):2333-2348. PubMed ID: 33693528
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The sleep-wake cycle regulates brain interstitial fluid tau in mice and CSF tau in humans.
    Holth JK; Fritschi SK; Wang C; Pedersen NP; Cirrito JR; Mahan TE; Finn MB; Manis M; Geerling JC; Fuller PM; Lucey BP; Holtzman DM
    Science; 2019 Feb; 363(6429):880-884. PubMed ID: 30679382
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphorylation and oligomerization of α-synuclein associated with GSK-3β activation in the rTg4510 mouse model of tauopathy.
    Takaichi Y; Chambers JK; Inoue H; Ano Y; Takashima A; Nakayama H; Uchida K
    Acta Neuropathol Commun; 2020 Jun; 8(1):86. PubMed ID: 32560668
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deposition of Phosphorylated α-Synuclein in the rTg4510 Mouse Model of Tauopathy.
    Takaichi Y; Ano Y; Chambers JK; Uchida K; Takashima A; Nakayama H
    J Neuropathol Exp Neurol; 2018 Oct; 77(10):920-928. PubMed ID: 30107539
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.