BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 34656001)

  • 1. Survival of Clostridium perfringens, Staphylococcus aureus and Salmonella enterica in alternatively cured bacon during cooking and process deviations.
    Cruzen SM; Cetin-Karaca H; Tarté R; Sebranek JG; Dickson JS
    Meat Sci; 2022 Feb; 184():108687. PubMed ID: 34656001
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Validation of bacon processing conditions to verify control of Clostridium perfringens and Staphylococcus aureus.
    Taormina PJ; Bartholomew GW
    J Food Prot; 2005 Sep; 68(9):1831-9. PubMed ID: 16161681
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluating microbial safety of slow partial-cooking processes for bacon: use of a predictive tool based on small-scale isothermal meat inoculation studies.
    Burnham GM; Fanslau MA; Ingham SC
    J Food Prot; 2006 Mar; 69(3):602-8. PubMed ID: 16541692
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting outgrowth and inactivation of Clostridium perfringens in meat products during low temperature long time heat treatment.
    Duan Z; Hansen TH; Hansen TB; Dalgaard P; Knøchel S
    Int J Food Microbiol; 2016 Aug; 230():45-57. PubMed ID: 27127839
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lateral transfer, vertical translocation, and survival of inoculated bacteria during moisture enhancement of pork.
    Wen X; Dickson JS
    J Food Prot; 2013 Apr; 76(4):595-600. PubMed ID: 23575120
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Survival of methicillin-resistant Staphylococcus aureus during commercial heat treatment of slab bacon and consumer preparation of sliced bacon.
    Campbell JA; Dickson JS; Cordray JC; Olson D; Mendonca AF; Prusa KJ
    J Food Prot; 2014 Jan; 77(1):83-6. PubMed ID: 24406002
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of Staphylococcus aureus growth potential in ham during a slow-cooking process: use of predictions derived from the U.S. Department of Agriculture Pathogen Modeling Program 6.1 predictive model and an inoculation study.
    Ingham SC; Losinski JA; Dropp BK; Vivio LL; Buege DR
    J Food Prot; 2004 Jul; 67(7):1512-6. PubMed ID: 15270512
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predictive model for growth of Clostridium perfringens in cooked cured pork.
    Juneja VK; Huang L; Thippareddi HH
    Int J Food Microbiol; 2006 Jul; 110(1):85-92. PubMed ID: 16697066
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predictive model for growth of Clostridium perfringens during cooling of cooked pork supplemented with sodium chloride and sodium pyrophosphate.
    Juneja VK; Osoria M; Purohit AS; Golden CE; Mishra A; Taneja NK; Salazar JK; Thippareddi H; Kumar GD
    Meat Sci; 2021 Oct; 180():108557. PubMed ID: 34052695
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Behavior and Inactivation of Enterotoxin-Positive Clostridium perfringens in Pork Picadillo and Tamales Filled with Pork Picadillo under Different Cooking, Storage, and Reheating Conditions.
    Villarruel-López A; Ruíz-Quezada SL; Castro-Rosas J; Gomez-Aldapa CA; Olea-Rodríguez MA; Nuño K; Navarro-Hidalgo V; Torres-Vitela MR
    J Food Prot; 2016 May; 79(5):741-7. PubMed ID: 27296420
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of an integrated model for heat transfer and dynamic growth of Clostridium perfringens during the cooling of cooked boneless ham.
    Amézquita A; Weller CL; Wang L; Thippareddi H; Burson DE
    Int J Food Microbiol; 2005 May; 101(2):123-44. PubMed ID: 15862875
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microbiological studies on hamburgers.
    Tamminga SK; Beumer RR; Kampelmacher EH
    J Hyg (Lond); 1982 Feb; 88(1):125-42. PubMed ID: 6276464
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potential for growth of Clostridium perfringens from spores in pork scrapple during cooling.
    Juneja VK; Porto-Fett AC; Gartner K; Tufft L; Luchansky JB
    Foodborne Pathog Dis; 2010 Feb; 7(2):153-7. PubMed ID: 19785539
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antimicrobial properties of salt (NaCl) used for the preservation of natural casings.
    Wijnker JJ; Koop G; Lipman LJ
    Food Microbiol; 2006 Oct; 23(7):657-62. PubMed ID: 16943065
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Survival and growth of Clostridium perfringens in commercial no-nitrate-or-nitrite-added (natural and organic) frankfurters, hams, and bacon.
    Jackson AL; Sullivan GA; Kulchaiyawat C; Sebranek JG; Dickson JS
    J Food Prot; 2011 Mar; 74(3):410-6. PubMed ID: 21375877
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibitory effects of organic acid salts on growth of Clostridium perfringens from spore inocula during chilling of marinated ground turkey breast.
    Juneja VK; Thippareddi H
    Int J Food Microbiol; 2004 Jun; 93(2):155-63. PubMed ID: 15135954
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predictive model for growth of Clostridium perfringens during cooling of cooked uncured meat and poultry.
    Juneja VK; Marks H; Huang L; Thippareddi H
    Food Microbiol; 2011 Jun; 28(4):791-5. PubMed ID: 21511140
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of the sanitary effectiveness of holding temperatures on beef cooked at low temperature.
    Brown DF; Twedt RM
    Appl Microbiol; 1972 Oct; 24(4):599-603. PubMed ID: 4343865
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Risk profiles of pork and poultry meat and risk ratings of various pathogen/product combinations.
    Mataragas M; Skandamis PN; Drosinos EH
    Int J Food Microbiol; 2008 Aug; 126(1-2):1-12. PubMed ID: 18602180
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulating Cross-Contamination of Cooked Pork with
    Dang-Xuan S; Nguyen-Viet H; Pham-Duc P; Grace D; Unger F; Nguyen-Hai N; Nguyen-Tien T; Makita K
    Int J Environ Res Public Health; 2018 Oct; 15(10):. PubMed ID: 30360454
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.