BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 34656020)

  • 1. New degradation mechanism of black tea pigment theaflavin involving condensation with epigallocatechin-3-O-gallate.
    Tanaka T; Yasumatsu M; Hirotani M; Matsuo Y; Li N; Zhu HT; Saito Y; Ishimaru K; Zhang YJ
    Food Chem; 2022 Feb; 370():131326. PubMed ID: 34656020
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reaction of the black tea pigment theaflavin during enzymatic oxidation of tea catechins.
    Li Y; Shibahara A; Matsuo Y; Tanaka T; Kouno I
    J Nat Prod; 2010 Jan; 73(1):33-9. PubMed ID: 20014758
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The enzymatic synthesis of theaflavin-3-gallate oxidation product and its determination.
    Jian J; An J; Gao Z; Zeng L; Luo W; Ding Y
    Talanta; 2024 Aug; 276():126239. PubMed ID: 38781912
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two types of oxidative dimerization of the black tea polyphenol theaflavin.
    Tanaka T; Inoue K; Betsumiya Y; Mine C; Kouno I
    J Agric Food Chem; 2001 Dec; 49(12):5785-9. PubMed ID: 11743764
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural identification of theaflavin trigallate and tetragallate from black tea using liquid chromatography/electrospray ionization tandem mass spectrometry.
    Chen H; Shurlknight K; Leung T; Sang S
    J Agric Food Chem; 2012 Oct; 60(43):10850-7. PubMed ID: 23066878
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of theaflavin from epicatechin and epigallocatechin by plant homogenates and role of epicatechin quinone in the synthesis and degradation of theaflavin.
    Tanaka T; Mine C; Inoue K; Matsuda M; Kouno I
    J Agric Food Chem; 2002 Mar; 50(7):2142-8. PubMed ID: 11902970
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stability of black tea polyphenol, theaflavin, and identification of theanaphthoquinone as its major radical reaction product.
    Jhoo JW; Lo CY; Li S; Sang S; Ang CY; Heinze TM; Ho CT
    J Agric Food Chem; 2005 Jul; 53(15):6146-50. PubMed ID: 16029009
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Suppression of extracellular signals and cell proliferation by the black tea polyphenol, theaflavin-3,3'-digallate.
    Liang YC; Chen YC; Lin YL; Lin-Shiau SY; Ho CT; Lin JK
    Carcinogenesis; 1999 Apr; 20(4):733-6. PubMed ID: 10223207
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Preparation and component analysis of tea pigments].
    Li D; Wan X; Xia T
    Wei Sheng Yan Jiu; 2004 Nov; 33(6):698-700. PubMed ID: 15727181
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of TPA-induced protein kinase C and transcription activator protein-1 binding activities by theaflavin-3,3'-digallate from black tea in NIH3T3 cells.
    Chen YC; Liang YC; Lin-Shiau SY; Ho CT; Lin JK
    J Agric Food Chem; 1999 Apr; 47(4):1416-21. PubMed ID: 10563991
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increase of theaflavin gallates and thearubigins by acceleration of catechin oxidation in a new fermented tea product obtained by the tea-rolling processing of loquat ( Eriobotrya japonica ) and green tea leaves.
    Tanaka T; Miyata Y; Tamaya K; Kusano R; Matsuo Y; Tamaru S; Tanaka K; Matsui T; Maeda M; Kouno I
    J Agric Food Chem; 2009 Jul; 57(13):5816-22. PubMed ID: 19507893
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theaflavin-3,3'-digallate from black tea blocks the nitric oxide synthase by down-regulating the activation of NF-kappaB in macrophages.
    Lin YL; Tsai SH; Lin-Shiau SY; Ho CT; Lin JK
    Eur J Pharmacol; 1999 Feb; 367(2-3):379-88. PubMed ID: 10079014
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient Synthesis of Theaflavin 3-Gallate by a Tyrosinase-Catalyzed Reaction with (-)-Epicatechin and (-)-Epigallocatechin Gallate in a 1-Octanol/Buffer Biphasic System.
    Narai-Kanayama A; Uekusa Y; Kiuchi F; Nakayama T
    J Agric Food Chem; 2018 Dec; 66(51):13464-13472. PubMed ID: 30482011
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of black and green tea polyphenols on c-jun phosphorylation and H(2)O(2) production in transformed and non-transformed human bronchial cell lines: possible mechanisms of cell growth inhibition and apoptosis induction.
    Yang GY; Liao J; Li C; Chung J; Yurkow EJ; Ho CT; Yang CS
    Carcinogenesis; 2000 Nov; 21(11):2035-9. PubMed ID: 11062165
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of activator protein 1 activity and cell growth by purified green tea and black tea polyphenols in H-ras-transformed cells: structure-activity relationship and mechanisms involved.
    Chung JY; Huang C; Meng X; Dong Z; Yang CS
    Cancer Res; 1999 Sep; 59(18):4610-7. PubMed ID: 10493515
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel Theaflavin-Type Chlorogenic Acid Derivatives Identified in Black Tea.
    Zhang S; Yang C; Idehen E; Shi L; Lv L; Sang S
    J Agric Food Chem; 2018 Apr; 66(13):3402-3407. PubMed ID: 29534564
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antioxidant properties of fractions and polyphenol constituents from green, oolong and black teas.
    Xie B; Shi H; Chen Q; Ho CT
    Proc Natl Sci Counc Repub China B; 1993 Apr; 17(2):77-84. PubMed ID: 7809277
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of polyphenol oxidase and peroxidase in the generation of black tea theaflavins.
    Subramanian N; Venkatesh P; Ganguli S; Sinkar VP
    J Agric Food Chem; 1999 Jul; 47(7):2571-8. PubMed ID: 10552528
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theaflavins in black tea and catechins in green tea are equally effective antioxidants.
    Leung LK; Su Y; Chen R; Zhang Z; Huang Y; Chen ZY
    J Nutr; 2001 Sep; 131(9):2248-51. PubMed ID: 11533262
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Effect of Green and Black Tea Polyphenols on
    Alqahtani S; Welton K; Gius JP; Elmegerhi S; Kato TA
    Int J Mol Sci; 2019 Mar; 20(6):. PubMed ID: 30875717
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.