These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 34656050)

  • 1. Extreme neural machines.
    Boucher-Routhier M; Zhang BLF; Thivierge JP
    Neural Netw; 2021 Dec; 144():639-647. PubMed ID: 34656050
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Target spike patterns enable efficient and biologically plausible learning for complex temporal tasks.
    Muratore P; Capone C; Paolucci PS
    PLoS One; 2021; 16(2):e0247014. PubMed ID: 33592040
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Training a spiking neuronal network model of visual-motor cortex to play a virtual racket-ball game using reinforcement learning.
    Anwar H; Caby S; Dura-Bernal S; D'Onofrio D; Hasegan D; Deible M; Grunblatt S; Chadderdon GL; Kerr CC; Lakatos P; Lytton WW; Hazan H; Neymotin SA
    PLoS One; 2022; 17(5):e0265808. PubMed ID: 35544518
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Learning spatiotemporal signals using a recurrent spiking network that discretizes time.
    Maes A; Barahona M; Clopath C
    PLoS Comput Biol; 2020 Jan; 16(1):e1007606. PubMed ID: 31961853
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Matching recall and storage in sequence learning with spiking neural networks.
    Brea J; Senn W; Pfister JP
    J Neurosci; 2013 Jun; 33(23):9565-75. PubMed ID: 23739954
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Performance of biologically grounded models of the early visual system on standard object recognition tasks.
    Teichmann M; Larisch R; Hamker FH
    Neural Netw; 2021 Dec; 144():210-228. PubMed ID: 34507042
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pattern Recognition of Spiking Neural Networks Based on Visual Mechanism and Supervised Synaptic Learning.
    Li X; Yi H; Luo S
    Neural Plast; 2020; 2020():8851351. PubMed ID: 33193755
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neural learning rules for generating flexible predictions and computing the successor representation.
    Fang C; Aronov D; Abbott LF; Mackevicius EL
    Elife; 2023 Mar; 12():. PubMed ID: 36928104
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Goal-Directed Decision Making with Spiking Neurons.
    Friedrich J; Lengyel M
    J Neurosci; 2016 Feb; 36(5):1529-46. PubMed ID: 26843636
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic Spatiotemporal Pattern Recognition With Recurrent Spiking Neural Network.
    Shen J; Liu JK; Wang Y
    Neural Comput; 2021 Oct; 33(11):2971-2995. PubMed ID: 34474470
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mirrored STDP Implements Autoencoder Learning in a Network of Spiking Neurons.
    Burbank KS
    PLoS Comput Biol; 2015 Dec; 11(12):e1004566. PubMed ID: 26633645
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Learning probabilistic neural representations with randomly connected circuits.
    Maoz O; Tkačik G; Esteki MS; Kiani R; Schneidman E
    Proc Natl Acad Sci U S A; 2020 Oct; 117(40):25066-25073. PubMed ID: 32948691
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Learning precise spatiotemporal sequences via biophysically realistic learning rules in a modular, spiking network.
    Cone I; Shouval HZ
    Elife; 2021 Mar; 10():. PubMed ID: 33734085
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recurrent neural networks that learn multi-step visual routines with reinforcement learning.
    Mollard S; Wacongne C; Bohte SM; Roelfsema PR
    PLoS Comput Biol; 2024 Apr; 20(4):e1012030. PubMed ID: 38683837
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The covariance perceptron: A new paradigm for classification and processing of time series in recurrent neuronal networks.
    Gilson M; Dahmen D; Moreno-Bote R; Insabato A; Helias M
    PLoS Comput Biol; 2020 Oct; 16(10):e1008127. PubMed ID: 33044953
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Embedding multiple trajectories in simulated recurrent neural networks in a self-organizing manner.
    Liu JK; Buonomano DV
    J Neurosci; 2009 Oct; 29(42):13172-81. PubMed ID: 19846705
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biologically plausible learning in recurrent neural networks reproduces neural dynamics observed during cognitive tasks.
    Miconi T
    Elife; 2017 Feb; 6():. PubMed ID: 28230528
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A review of learning in biologically plausible spiking neural networks.
    Taherkhani A; Belatreche A; Li Y; Cosma G; Maguire LP; McGinnity TM
    Neural Netw; 2020 Feb; 122():253-272. PubMed ID: 31726331
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Novel Neural Model With Lateral Interaction for Learning Tasks.
    Jin D; Qin Z; Yang M; Chen P
    Neural Comput; 2021 Feb; 33(2):528-551. PubMed ID: 33253032
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resonance with subthreshold oscillatory drive organizes activity and optimizes learning in neural networks.
    Roach JP; Pidde A; Katz E; Wu J; Ognjanovski N; Aton SJ; Zochowski MR
    Proc Natl Acad Sci U S A; 2018 Mar; 115(13):E3017-E3025. PubMed ID: 29545273
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.