These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 34656816)

  • 1. Contemporary dose-escalation methods for early phase studies in the immunotherapeutics era.
    Araujo DV; Oliva M; Li K; Fazelzad R; Liu ZA; Siu LL
    Eur J Cancer; 2021 Oct; 158():85-98. PubMed ID: 34656816
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Systematic comparison of the statistical operating characteristics of various Phase I oncology designs.
    Ananthakrishnan R; Green S; Chang M; Doros G; Massaro J; LaValley M
    Contemp Clin Trials Commun; 2017 Mar; 5():34-48. PubMed ID: 29740620
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accuracy, Safety, and Reliability of Novel Phase I Trial Designs.
    Zhou H; Yuan Y; Nie L
    Clin Cancer Res; 2018 Sep; 24(18):4357-4364. PubMed ID: 29661774
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A software tool for both the maximum tolerated dose and the optimal biological dose finding trials in early phase designs.
    Li C; Sun H; Cheng C; Tang L; Pan H
    Contemp Clin Trials Commun; 2022 Dec; 30():100990. PubMed ID: 36203850
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization of EWOC principle in BLRM design for phase 1 oncology trials.
    Guo X; Kent S; Maity A; Zhong W
    J Biopharm Stat; 2024 Apr; ():1-17. PubMed ID: 38562014
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An overview of the BOIN design and its current extensions for novel early-phase oncology trials.
    Ananthakrishnan R; Lin R; He C; Chen Y; Li D; LaValley M
    Contemp Clin Trials Commun; 2022 Aug; 28():100943. PubMed ID: 35812822
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparative study of Bayesian optimal interval (BOIN) design with interval 3+3 (i3+3) design for phase I oncology dose-finding trials.
    Zhou Y; Li R; Yan F; Lee JJ; Yuan Y
    Stat Biopharm Res; 2021; 13(2):147-155. PubMed ID: 34249223
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the relative efficiency of model-assisted designs: a conditional approach.
    Lin R; Yuan Y
    J Biopharm Stat; 2019; 29(4):648-662. PubMed ID: 31258039
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Incorporating historical information to improve phase I clinical trials.
    Zhou Y; Lee JJ; Wang S; Bailey S; Yuan Y
    Pharm Stat; 2021 Nov; 20(6):1017-1034. PubMed ID: 33793044
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Would the Recommended Dose Have Been Different Using Novel Dose-Finding Designs? Comparing Dose-Finding Designs in Published Trials.
    Silva RB; Yap C; Carvajal R; Lee SM
    JCO Precis Oncol; 2021; 5():. PubMed ID: 34250415
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new pragmatic design for dose escalation in phase 1 clinical trials using an adaptive continual reassessment method.
    North B; Kocher HM; Sasieni P
    BMC Cancer; 2019 Jun; 19(1):632. PubMed ID: 31242873
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adaptive design for identifying maximum tolerated dose early to accelerate dose-finding trial.
    Kojima M
    BMC Med Res Methodol; 2022 Apr; 22(1):97. PubMed ID: 35382745
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Designing phase I oncology dose escalation using dose-exposure-toxicity models as a complementary approach to model-based dose-toxicity models.
    Pantoja K; Lanke S; Munafo A; Victor A; Habermehl C; Schueler A; Venkatakrishnan K; Girard P; Goteti K
    CPT Pharmacometrics Syst Pharmacol; 2022 Oct; 11(10):1371-1381. PubMed ID: 35852048
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimal phase I dose-escalation trial designs in oncology--a simulation study.
    Gerke O; Siedentop H
    Stat Med; 2008 Nov; 27(26):5329-44. PubMed ID: 17849502
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toxicity-dependent feasibility bounds for the escalation with overdose control approach in phase I cancer trials.
    Wheeler GM; Sweeting MJ; Mander AP
    Stat Med; 2017 Jul; 36(16):2499-2513. PubMed ID: 28295513
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CUSUMIN: A cumulative sum interval design for cancer phase I dose finding studies.
    Hatayama T; Yasui S
    Pharm Stat; 2022 Nov; 21(6):1324-1341. PubMed ID: 35833753
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficiency of new dose escalation designs in dose-finding phase I trials of molecularly targeted agents.
    Le Tourneau C; Gan HK; Razak AR; Paoletti X
    PLoS One; 2012; 7(12):e51039. PubMed ID: 23251419
    [TBL] [Abstract][Full Text] [Related]  

  • 18. BOIN: a novel Bayesian design platform to accelerate early phase brain tumor clinical trials.
    Yuan Y; Wu J; Gilbert MR
    Neurooncol Pract; 2021 Dec; 8(6):627-638. PubMed ID: 34777832
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Revisiting isotonic phase I design in the era of model-assisted dose-finding.
    Wages NA; Conaway MR
    Clin Trials; 2018 Oct; 15(5):524-529. PubMed ID: 30101616
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Time-to-Event Bayesian Optimal Interval Design to Accelerate Phase I Trials.
    Yuan Y; Lin R; Li D; Nie L; Warren KE
    Clin Cancer Res; 2018 Oct; 24(20):4921-4930. PubMed ID: 29769209
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.