These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 3465718)

  • 1. Characterization of production of cholesterol oxidases in three Rhodococcus strains.
    Aihara H; Watanabe K; Nakamura R
    J Appl Bacteriol; 1986 Oct; 61(4):269-74. PubMed ID: 3465718
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cholesterol to cholestenone oxidation by ChoG, the main extracellular cholesterol oxidase of Rhodococcus ruber strain Chol-4.
    Fernández de Las Heras L; Perera J; Navarro Llorens JM
    J Steroid Biochem Mol Biol; 2014 Jan; 139():33-44. PubMed ID: 24125733
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cholesterol oxidase and resistance of Rhodococcus equi to peroxidative stress in vitro in the presence of cholesterol.
    Fuhrmann H; Dobeleit G; Bellair S; Gück T
    J Vet Med B Infect Dis Vet Public Health; 2002 Aug; 49(6):310-1. PubMed ID: 12241035
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rhodococcus erythropolis ATCC 25544 as a suitable source of cholesterol oxidase: cell-linked and extracellular enzyme synthesis, purification and concentration.
    Sojo MM; Bru RR; García-Carmona FF
    BMC Biotechnol; 2002 Mar; 2():3. PubMed ID: 11914155
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ChoG is the main inducible extracellular cholesterol oxidase of Rhodococcus sp. strain CECT3014.
    Fernández de Las Heras L; Mascaraque V; García Fernández E; Navarro-Llorens JM; Perera J; Drzyzga O
    Microbiol Res; 2011 Jul; 166(5):403-18. PubMed ID: 20630728
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nutritional factors that affect the production of cholesterol oxidase by Rhodococcus equi no. 23.
    Lee MT; Chen WC; Chou CC
    Biotechnol Appl Biochem; 1997 Dec; 26(3):159-62. PubMed ID: 9428154
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The substrate specificity and stereochemistry, reversibility and inhibition of the 3-oxo steroid delta 4-delta 5-isomerase component of cholesterol oxidase.
    Smith AG; Brooks CJ
    Biochem J; 1977 Oct; 167(1):121-9. PubMed ID: 588244
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bacterial cholesterol oxidases are able to act as flavoprotein-linked ketosteroid monooxygenases that catalyse the hydroxylation of cholesterol to 4-cholesten-6-ol-3-one.
    Molnár I; Hayashi N; Choi KP; Yamamoto H; Yamashita M; Murooka Y
    Mol Microbiol; 1993 Feb; 7(3):419-28. PubMed ID: 8459768
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Maximization of cholesterol oxidase production by Rhodococcus equi no. 23 By using response surface methodology.
    Lee MT; Chen WC; Chou CC
    Biotechnol Appl Biochem; 1998 Dec; 28 ( Pt 3)():229-33. PubMed ID: 9799721
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cell-linked and extracellular cholesterol oxidase activities from Rhodococcus erythropolis. Isolation and physiological characterization.
    Sojo M; Bru R; Lopez-Molina D; Garcia-Carmona F; Argüelles JC
    Appl Microbiol Biotechnol; 1997 May; 47(5):583-9. PubMed ID: 9210347
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxidation of macrophage membrane cholesterol by intracellular Rhodococcus equi.
    Linder R; Bernheimer AW
    Vet Microbiol; 1997 Jun; 56(3-4):269-76. PubMed ID: 9226841
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extracellular cholesterol oxidase from Rhodococcus sp.: isolation and molecular characterization.
    Lashkarian H; Raheb J; Shahzamani K; Shahbani H; Shamsara M
    Iran Biomed J; 2010; 14(1-2):49-57. PubMed ID: 20683498
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cholesterol side-chain cleavage by immobilized cells of Rhodococcus equi DSM 89-133.
    Ahmad S; Roy PK; Basu SK; Johri BN
    Indian J Exp Biol; 1993 Apr; 31(4):319-22. PubMed ID: 8359831
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of alkaline cholesterol oxidase purified from Rhodococcus sp. PKPD-CL for its halo tolerance, detergent and organic solvent stability.
    Kasabe PJ; Mali GT; Dandge PB
    Protein Expr Purif; 2015 Dec; 116():30-41. PubMed ID: 26276474
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cholesterol-oxidase-magnetic nanobioconjugates for the production of 4-cholesten-3-one and 4-cholesten-3, 7-dione.
    Ghosh S; Ahmad R; Gautam VK; Khare SK
    Bioresour Technol; 2018 Apr; 254():91-96. PubMed ID: 29413944
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Degradations of 4-cholesten-3-one and 1,4-androstadiene-3,17-dione by cholesterol-degrading bacteria.
    Watanabe K; Aihara H; Tachi N; Nakamura R
    J Appl Bacteriol; 1987 Feb; 62(2):151-5. PubMed ID: 3571037
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Production of cholesterol oxidase by Rhodococcus equi No. 23 in a jar fermenter.
    Chou CC; Lee MT; Chen WC
    Biotechnol Appl Biochem; 1999 Jun; 29(3):217-21. PubMed ID: 10334951
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Natural variability of Actinomyces lavendulae, a producer of cholesterol oxidase].
    Imshenetskiĭ AA; Shirshova GA; Nikitin LE
    Mikrobiologiia; 1982; 51(3):487-9. PubMed ID: 6956791
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Growth and production of cholesterol oxidase by alginate-immobilized cells of Rhodococcus equi No. 23.
    Chang YC; Chou CC
    Biotechnol Appl Biochem; 2002 Apr; 35(2):69-74. PubMed ID: 11916448
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxidation/isomerization of 5-cholesten-3 beta-ol and 5-cholesten-3-one to 4-cholesten-3-one in pure sterol and mixed phospholipid-containing monolayers by cholesterol oxidase.
    Slotte JP; Ostman AL
    Biochim Biophys Acta; 1993 Feb; 1145(2):243-9. PubMed ID: 8431456
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.