BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 34657723)

  • 1. PUS7: a targetable epitranscriptomic regulator of glioblastoma growth.
    Zhang DY; Ming GL; Song H
    Trends Pharmacol Sci; 2021 Dec; 42(12):976-978. PubMed ID: 34657723
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeting PUS7 suppresses tRNA pseudouridylation and glioblastoma tumorigenesis.
    Cui Q; Yin K; Zhang X; Ye P; Chen X; Chao J; Meng H; Wei J; Roeth D; Li L; Qin Y; Sun G; Zhang M; Klein J; Huynhle M; Wang C; Zhang L; Badie B; Kalkum M; He C; Yi C; Shi Y
    Nat Cancer; 2021 Sep; 2(9):932-949. PubMed ID: 35121864
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pseudouridylation of tRNA-Derived Fragments Steers Translational Control in Stem Cells.
    Guzzi N; Cieśla M; Ngoc PCT; Lang S; Arora S; Dimitriou M; Pimková K; Sommarin MNE; Munita R; Lubas M; Lim Y; Okuyama K; Soneji S; Karlsson G; Hansson J; Jönsson G; Lund AH; Sigvardsson M; Hellström-Lindberg E; Hsieh AC; Bellodi C
    Cell; 2018 May; 173(5):1204-1216.e26. PubMed ID: 29628141
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The human pseudouridine synthase PUS7 recognizes RNA with an extended multi-domain binding surface.
    Guegueniat J; Halabelian L; Zeng H; Dong A; Li Y; Wu H; Arrowsmith CH; Kothe U
    Nucleic Acids Res; 2021 Nov; 49(20):11810-11822. PubMed ID: 34718722
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pseudouridine synthase 7 impacts Candida albicans rRNA processing and morphological plasticity.
    Pickerill ES; Kurtz RP; Tharp A; Guerrero Sanz P; Begum M; Bernstein DA
    Yeast; 2019 Nov; 36(11):669-677. PubMed ID: 31364194
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The yeast gene YNL292w encodes a pseudouridine synthase (Pus4) catalyzing the formation of psi55 in both mitochondrial and cytoplasmic tRNAs.
    Becker HF; Motorin Y; Planta RJ; Grosjean H
    Nucleic Acids Res; 1997 Nov; 25(22):4493-9. PubMed ID: 9358157
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PPUS: a web server to predict PUS-specific pseudouridine sites.
    Li YH; Zhang G; Cui Q
    Bioinformatics; 2015 Oct; 31(20):3362-4. PubMed ID: 26076723
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Radiolabeling-Free, qPCR-Based Method for Locus-Specific Pseudouridine Detection.
    Lei Z; Yi C
    Angew Chem Int Ed Engl; 2017 Nov; 56(47):14878-14882. PubMed ID: 28960747
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of Pus1 Pseudouridine Synthase on Specific Decoding Events in
    Khonsari B; Klassen R
    Biomolecules; 2020 May; 10(5):. PubMed ID: 32392804
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mapping of pseudouridine residues on cellular and viral transcripts using a novel antibody-based technique.
    Martinez Campos C; Tsai K; Courtney DG; Bogerd HP; Holley CL; Cullen BR
    RNA; 2021 Nov; 27(11):1400-1411. PubMed ID: 34376564
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An arginine-aspartate network in the active site of bacterial TruB is critical for catalyzing pseudouridine formation.
    Friedt J; Leavens FM; Mercier E; Wieden HJ; Kothe U
    Nucleic Acids Res; 2014 Apr; 42(6):3857-70. PubMed ID: 24371284
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The structural basis of mRNA recognition and binding by yeast pseudouridine synthase PUS1.
    Grünberg S; Doyle LA; Wolf EJ; Dai N; Corrêa IR; Yigit E; Stoddard BL
    PLoS One; 2023; 18(11):e0291267. PubMed ID: 37939088
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pseudouridine at position 55 in tRNA controls the contents of other modified nucleotides for low-temperature adaptation in the extreme-thermophilic eubacterium Thermus thermophilus.
    Ishida K; Kunibayashi T; Tomikawa C; Ochi A; Kanai T; Hirata A; Iwashita C; Hori H
    Nucleic Acids Res; 2011 Mar; 39(6):2304-18. PubMed ID: 21097467
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human TRUB1 is a highly conserved pseudouridine synthase responsible for the formation of Ψ55 in mitochondrial tRNAAsn, tRNAGln, tRNAGlu and tRNAPro.
    Jia Z; Meng F; Chen H; Zhu G; Li X; He Y; Zhang L; He X; Zhan H; Chen M; Ji Y; Wang M; Guan MX
    Nucleic Acids Res; 2022 Sep; 50(16):9368-9381. PubMed ID: 36018806
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of Pseudouridine Formation by Deg1 for Functionality of Two Glutamine Isoacceptor tRNAs.
    Klassen R; Schaffrath R
    Biomolecules; 2017 Jan; 7(1):. PubMed ID: 28134782
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RNA modification enzyme TruB is a tRNA chaperone.
    Keffer-Wilkes LC; Veerareddygari GR; Kothe U
    Proc Natl Acad Sci U S A; 2016 Dec; 113(50):14306-14311. PubMed ID: 27849601
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of the Saccharomyces cerevisiae RNA:pseudouridine synthase responsible for formation of psi(2819) in 21S mitochondrial ribosomal RNA.
    Ansmant I; Massenet S; Grosjean H; Motorin Y; Branlant C
    Nucleic Acids Res; 2000 May; 28(9):1941-6. PubMed ID: 10756195
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Major identity determinants for enzymatic formation of ribothymidine and pseudouridine in the T psi-loop of yeast tRNAs.
    Becker HF; Motorin Y; Sissler M; Florentz C; Grosjean H
    J Mol Biol; 1997 Dec; 274(4):505-18. PubMed ID: 9417931
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single nucleotide modulation of uridine to pseudouridine rearrangement in transfer RNA catalyzed by pseudouridine synthase I.
    Chihade JW; Horne DA
    J Mol Recognit; 1996; 9(5-6):524-7. PubMed ID: 9174935
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pre-steady-state kinetic analysis of the three Escherichia coli pseudouridine synthases TruB, TruA, and RluA reveals uniformly slow catalysis.
    Wright JR; Keffer-Wilkes LC; Dobing SR; Kothe U
    RNA; 2011 Dec; 17(12):2074-84. PubMed ID: 21998096
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.