These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 34657860)

  • 1. Design and analysis of a lightweight lower extremity exoskeleton with novel compliant ankle joints.
    He Y; Liu J; Li F; Cao W; Wu X
    Technol Health Care; 2022; 30(4):881-894. PubMed ID: 34657860
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Wearable Lower Limb Rehabilitation Exoskeleton Kinematic Analysis and Simulation.
    Li J; Peng J; Lu Z; Huang K
    Biomed Res Int; 2022; 2022():5029663. PubMed ID: 36072470
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinematics study of a 10 degrees-of-freedom lower extremity exoskeleton for crutch-less walking rehabilitation.
    Liu J; He Y; Li F; Cao W; Wu X
    Technol Health Care; 2022; 30(3):747-755. PubMed ID: 34486995
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimation of the Continuous Walking Angle of Knee and Ankle (Talocrural Joint, Subtalar Joint) of a Lower-Limb Exoskeleton Robot Using a Neural Network.
    Lee T; Kim I; Lee SH
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33923587
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design and evaluation of a modular lower limb exoskeleton for rehabilitation.
    Dos Santos WM; Nogueira SL; de Oliveira GC; Pena GG; Siqueira AAG
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():447-451. PubMed ID: 28813860
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulating the effect of ankle plantarflexion and inversion-eversion exoskeleton torques on center of mass kinematics during walking.
    Bianco NA; Collins SH; Liu K; Delp SL
    PLoS Comput Biol; 2023 Aug; 19(8):e1010712. PubMed ID: 37549183
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Lightweight Exoskeleton-Based Portable Gait Data Collection System.
    Haque MR; Imtiaz MH; Kwak ST; Sazonov E; Chang YH; Shen X
    Sensors (Basel); 2021 Jan; 21(3):. PubMed ID: 33498956
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel swing-assist un-motorized exoskeletons for gait training.
    Mankala KK; Banala SK; Agrawal SK
    J Neuroeng Rehabil; 2009 Jul; 6():24. PubMed ID: 19575808
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimating upper extremity joint loads of persons with spinal cord injury walking with a lower extremity powered exoskeleton and forearm crutches.
    Smith AJJ; Fournier BN; Nantel J; Lemaire ED
    J Biomech; 2020 Jun; 107():109835. PubMed ID: 32517865
    [TBL] [Abstract][Full Text] [Related]  

  • 10. BioMot exoskeleton - Towards a smart wearable robot for symbiotic human-robot interaction.
    Bacek T; Moltedo M; Langlois K; Prieto GA; Sanchez-Villamanan MC; Gonzalez-Vargas J; Vanderborght B; Lefeber D; Moreno JC
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1666-1671. PubMed ID: 28814059
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanics and energetics of post-stroke walking aided by a powered ankle exoskeleton with speed-adaptive myoelectric control.
    McCain EM; Dick TJM; Giest TN; Nuckols RW; Lewek MD; Saul KR; Sawicki GS
    J Neuroeng Rehabil; 2019 May; 16(1):57. PubMed ID: 31092269
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design of a biologically inspired lower limb exoskeleton for human gait rehabilitation.
    Lyu M; Chen W; Ding X; Wang J; Bai S; Ren H
    Rev Sci Instrum; 2016 Oct; 87(10):104301. PubMed ID: 27802730
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design and analysis of a lower limb assistive exoskeleton robot.
    Li X; Wang KY; Yang ZY
    Technol Health Care; 2024; 32(S1):79-93. PubMed ID: 38759039
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Kinematic Model of a Humanoid Lower Limb Exoskeleton with Hydraulic Actuators.
    Glowinski S; Krzyzynski T; Bryndal A; Maciejewski I
    Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33121194
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of Back-Support Exoskeleton Use on Lower Limb Joint Kinematics and Kinetics During Level Walking.
    Park JH; Lee Y; Madinei S; Kim S; Nussbaum MA; Srinivasan D
    Ann Biomed Eng; 2022 Aug; 50(8):964-977. PubMed ID: 35478066
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design of a Multi-Joint Passive Exoskeleton for Vertical Jumping Using Optimal Control.
    Ostraich B; Riemer R
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():2815-2823. PubMed ID: 36155480
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lower Limb Exoskeleton for Rehabilitation with Flexible Joints and Movement Routines Commanded by Electromyography and Baropodometry Sensors.
    Rosales-Luengas Y; Espinosa-Espejel KI; Lopéz-Gutiérrez R; Salazar S; Lozano R
    Sensors (Basel); 2023 Jun; 23(11):. PubMed ID: 37299979
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Research progress on compliant characteristics of lower extremity exoskeleton robots].
    Si G; Huang W; Li G; Xu F; Chu M; Liu J
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2019 Feb; 36(1):157-163. PubMed ID: 30887791
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Terrain Feature Estimation Method for a Lower Limb Exoskeleton Using Kinematic Analysis and Center of Pressure.
    Shim M; Han JI; Choi HS; Ha SM; Kim JH; Baek YS
    Sensors (Basel); 2019 Oct; 19(20):. PubMed ID: 31614811
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assistive Mobility Control of a Robotic Hip-Knee Exoskeleton for Gait Training.
    Changcheng C; Li YR; Chen CT
    Sensors (Basel); 2022 Jul; 22(13):. PubMed ID: 35808539
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.