These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 34657952)

  • 1. Correlated continuous-time random walk in the velocity field: the role of velocity and weak asymptotics.
    Liu J; Zhang C; Bao JD; Chen X
    Soft Matter; 2021 Nov; 17(42):9786-9798. PubMed ID: 34657952
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correlated continuous-time random walk in a velocity field: Anomalous bifractional crossover.
    Liu J; Bao JD; Chen X
    Phys Rev E; 2020 Dec; 102(6-1):062122. PubMed ID: 33465995
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strong anomalous diffusive behaviors of the two-state random walk process.
    Liu J; Zhu P; Bao JD; Chen X
    Phys Rev E; 2022 Jan; 105(1-1):014122. PubMed ID: 35193269
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Subordinated diffusion and continuous time random walk asymptotics.
    Dybiec B; Gudowska-Nowak E
    Chaos; 2010 Dec; 20(4):043129. PubMed ID: 21198099
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resolving a paradox of anomalous scalings in the diffusion of granular materials.
    Christov IC; Stone HA
    Proc Natl Acad Sci U S A; 2012 Oct; 109(40):16012-7. PubMed ID: 22992653
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Occurrence of normal and anomalous diffusion in polygonal billiard channels.
    Sanders DP; Larralde H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Feb; 73(2 Pt 2):026205. PubMed ID: 16605427
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Random death process for the regularization of subdiffusive fractional equations.
    Fedotov S; Falconer S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):052139. PubMed ID: 23767519
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chaotic jets with multifractal space-time random walk.
    Afanasiev VV; Sagdeev RZ; Zaslavsky GM
    Chaos; 1991 Aug; 1(2):143-159. PubMed ID: 12779907
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiple diffusive behaviors of the random walk in inhomogeneous environments.
    Luo X; Bao JD; Fan WY
    Phys Rev E; 2024 Jan; 109(1-1):014130. PubMed ID: 38366502
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coexistence of ergodicity and nonergodicity in the aging two-state random walks.
    Liu J; Jin Y; Bao JD; Chen X
    Soft Matter; 2022 Nov; 18(45):8687-8699. PubMed ID: 36349834
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single particle tracking in systems showing anomalous diffusion: the role of weak ergodicity breaking.
    Burov S; Jeon JH; Metzler R; Barkai E
    Phys Chem Chem Phys; 2011 Feb; 13(5):1800-12. PubMed ID: 21203639
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Monte Carlo simulation of tracer diffusion in amorphous polymers.
    Mansuri A; Vora P; Feuerbach T; Winck J; Vermeer AWP; Hoheisel W; Kierfeld J; Thommes M
    Soft Matter; 2024 Aug; 20(31):6204-6214. PubMed ID: 39046259
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generalized fractional diffusion equations for accelerating subdiffusion and truncated Lévy flights.
    Chechkin AV; Gonchar VY; Gorenflo R; Korabel N; Sokolov IM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Aug; 78(2 Pt 1):021111. PubMed ID: 18850790
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluid heterogeneity detection based on the asymptotic distribution of the time-averaged mean squared displacement in single particle tracking experiments.
    Zhang K; Crizer KPR; Schoenfisch MH; Hill DB; Didier G
    J Phys A Math Theor; 2018 Nov; 51(44):. PubMed ID: 31037119
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anomalous diffusion and dynamics of fluorescence recovery after photobleaching in the random-comb model.
    Yuste SB; Abad E; Baumgaertner A
    Phys Rev E; 2016 Jul; 94(1-1):012118. PubMed ID: 27575088
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anomalous diffusion and nonergodicity for heterogeneous diffusion processes with fractional Gaussian noise.
    Wang W; Cherstvy AG; Liu X; Metzler R
    Phys Rev E; 2020 Jul; 102(1-1):012146. PubMed ID: 32794926
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluid limit of the continuous-time random walk with general Lévy jump distribution functions.
    Cartea A; del-Castillo-Negrete D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Oct; 76(4 Pt 1):041105. PubMed ID: 17994934
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solvable random-walk model with memory and its relations with Markovian models of anomalous diffusion.
    Boyer D; Romo-Cruz JC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):042136. PubMed ID: 25375467
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Persistent-random-walk approach to anomalous transport of self-propelled particles.
    Sadjadi Z; Shaebani MR; Rieger H; Santen L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jun; 91(6):062715. PubMed ID: 26172744
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.