BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 34658197)

  • 1. [Potential impacts of climate change on suitable habitats of Marco Polo sheep in China].
    Wang MY; Zhang CJ; Mi CR; Han L; Li ML; Xu WX; Yang WK
    Ying Yong Sheng Tai Xue Bao; 2021 Sep; 32(9):3127-3135. PubMed ID: 34658197
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Habitat assessment of Marco Polo sheep (
    Salas EAL; Valdez R; Michel S; Boykin KG
    Ecol Evol; 2018 May; 8(10):5124-5138. PubMed ID: 29876087
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Border fences reduce potential for transboundary migration of Marco Polo Sheep (Ovis ammon polii) in the Pamir Plateau.
    Zhuo Y; Wang M; Liu Z; Xu W; Abdulnazar A; Rajabi AM; Davletbakov A; Haider J; Khan MZ; Loik N; Faryabi SP; Michel S; Ostrowski S; Moheb Z; Ruckstuhl K; da Silva AA; Alves J; Yang W
    Sci Total Environ; 2024 Feb; 912():169298. PubMed ID: 38128653
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Draft genome of the Marco Polo Sheep (Ovis ammon polii).
    Yang Y; Wang Y; Zhao Y; Zhang X; Li R; Chen L; Zhang G; Jiang Y; Qiu Q; Wang W; Wei HJ; Wang K
    Gigascience; 2017 Dec; 6(12):1-7. PubMed ID: 29112761
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Prediction of the suitable distribution and responses to climate change of Elaeagnus mollis in Shanxi Province, China].
    Zhang YB; Gao CH; Qin H
    Ying Yong Sheng Tai Xue Bao; 2018 Apr; 29(4):1156-1162. PubMed ID: 29726224
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impacts of climate change on the distribution of Sichuan snub-nosed monkeys (Rhinopithecus roxellana) in Shennongjia area, China.
    Luo Z; Zhou S; Yu W; Yu H; Yang J; Tian Y; Zhao M; Wu H
    Am J Primatol; 2015 Feb; 77(2):135-51. PubMed ID: 25224271
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Potential geographical distribution of
    Xia X; Li Y; Yang DD; Pi YY
    Ying Yong Sheng Tai Xue Bao; 2021 Dec; 32(12):4307-4314. PubMed ID: 34951272
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Potential distribution of three invasive agricultural pests in China under climate change.
    Zhang Y; Wan Y; Wang C; Chen J; Si Q; Ma F
    Sci Rep; 2024 Jun; 14(1):13672. PubMed ID: 38871779
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identifying potential refugia and corridors under climate change: A case study of endangered Sichuan golden monkey (Rhinopithecus roxellana) in Qinling Mountains, China.
    Li J; Li D; Xue Y; Wu B; He X; Liu F
    Am J Primatol; 2018 Nov; 80(11):e22929. PubMed ID: 30380174
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting the potential distribution of Campsis grandiflora in China under climate change.
    Ouyang X; Pan J; Wu Z; Chen A
    Environ Sci Pollut Res Int; 2022 Sep; 29(42):63629-63639. PubMed ID: 35461417
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potential distribution of the extremely endangered species Ostrya rehderiana (Betulaceae) in China under future climate change.
    Tang SL; Song YB; Zeng B; Dong M
    Environ Sci Pollut Res Int; 2022 Jan; 29(5):7782-7792. PubMed ID: 34476707
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Prediction on spatial migration of suitable distribution of Elaeagnus mollis under climate change conditions in Shanxi Province, China].
    Zhang YB; Liu YL; Qin H; Meng QX
    Ying Yong Sheng Tai Xue Bao; 2019 Feb; 30(2):496-502. PubMed ID: 30915801
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Climate change risks, extinction debt, and conservation implications for a threatened freshwater fish: Carmine shiner (Notropis percobromus).
    Pandit SN; Maitland BM; Pandit LK; Poesch MS; Enders EC
    Sci Total Environ; 2017 Nov; 598():1-11. PubMed ID: 28433817
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MaxEnt Modeling to Predict the Current and Future Distribution of
    Chen K; Wang B; Chen C; Zhou G
    Plants (Basel); 2022 Feb; 11(5):. PubMed ID: 35270140
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatio-temporal variation in potential habitats for rare and endangered plants and habitat conservation based on the maximum entropy model.
    Yang Z; Bai Y; Alatalo JM; Huang Z; Yang F; Pu X; Wang R; Yang W; Guo X
    Sci Total Environ; 2021 Aug; 784():147080. PubMed ID: 33905926
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting the potential distribution of 12 threatened medicinal plants on the Qinghai-Tibet Plateau, with a maximum entropy model.
    Yang L; Zhu X; Song W; Shi X; Huang X
    Ecol Evol; 2024 Feb; 14(2):e11042. PubMed ID: 38362168
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting suitable habitat for the endangered tree Ormosia microphylla in China.
    Wei L; Wang G; Xie C; Gao Z; Huang Q; Jim CY
    Sci Rep; 2024 May; 14(1):10330. PubMed ID: 38710804
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Current and future distribution of
    Wang E; Lu Z; Rohani ER; Ou J; Tong X; Han R
    Front Plant Sci; 2024; 15():1394799. PubMed ID: 38887460
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling potential distribution of newly recorded ant, Brachyponera nigrita using Maxent under climate change in Pothwar region, Pakistan.
    Gull E Fareen A; Mahmood T; Bodlah I; Rashid A; Khalid A; Mahmood S
    PLoS One; 2022; 17(1):e0262451. PubMed ID: 35045121
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Potential habitat and priority protection area of cranes with climate change in the Great Xing'an Mountains, China].
    Jiang LH; Gao JQ; Wan JZ
    Ying Yong Sheng Tai Xue Bao; 2019 Jul; 30(7):2457-2469. PubMed ID: 31418249
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.