These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 34658495)
1. A simplified tempo-spatial model to predict airborne pathogen release risk in enclosed spaces: An Eulerian-Lagrangian CFD approach. Mirzaei PA; Moshfeghi M; Motamedi H; Sheikhnejad Y; Bordbar H Build Environ; 2022 Jan; 207():108428. PubMed ID: 34658495 [TBL] [Abstract][Full Text] [Related]
2. CFD modeling of airborne pathogen transmission of COVID-19 in confined spaces under different ventilation strategies. Motamedi H; Shirzadi M; Tominaga Y; Mirzaei PA Sustain Cities Soc; 2022 Jan; 76():103397. PubMed ID: 34631393 [TBL] [Abstract][Full Text] [Related]
3. Airborne and aerosol pathogen transmission modeling of respiratory events in buildings: An overview of computational fluid dynamics. Sheikhnejad Y; Aghamolaei R; Fallahpour M; Motamedi H; Moshfeghi M; Mirzaei PA; Bordbar H Sustain Cities Soc; 2022 Apr; 79():103704. PubMed ID: 35070645 [TBL] [Abstract][Full Text] [Related]
4. Airborne transmission of COVID-19 virus in enclosed spaces: An overview of research methods. Zhao X; Liu S; Yin Y; Zhang TT; Chen Q Indoor Air; 2022 Jun; 32(6):e13056. PubMed ID: 35762235 [TBL] [Abstract][Full Text] [Related]
5. Modelling of evaporation of cough droplets in inhomogeneous humidity fields using the multi-component Eulerian-Lagrangian approach. Li X; Shang Y; Yan Y; Yang L; Tu J Build Environ; 2018 Jan; 128():68-76. PubMed ID: 32287977 [TBL] [Abstract][Full Text] [Related]
6. Effect of indoor temperature on the velocity fields and airborne transmission of sneeze droplets: An experimental study and transient CFD modeling. Bahramian A; Mohammadi M; Ahmadi G Sci Total Environ; 2023 Feb; 858(Pt 2):159444. PubMed ID: 36252673 [TBL] [Abstract][Full Text] [Related]
7. Semi-surrogate modelling of droplets evaporation process via XGBoost integrated CFD simulations. Yan Y; Li X; Sun W; Fang X; He F; Tu J Sci Total Environ; 2023 Oct; 895():164968. PubMed ID: 37356762 [TBL] [Abstract][Full Text] [Related]
8. Verification Benchmarks to Assess the Implementation of Computational Fluid Dynamics Based Hemolysis Prediction Models. Hariharan P; D'Souza G; Horner M; Malinauskas RA; Myers MR J Biomech Eng; 2015 Sep; 137(9):. PubMed ID: 26065371 [TBL] [Abstract][Full Text] [Related]
9. On coughing and airborne droplet transmission to humans. Dbouk T; Drikakis D Phys Fluids (1994); 2020 May; 32(5):053310. PubMed ID: 32574229 [TBL] [Abstract][Full Text] [Related]
10. A short review of vapour droplet dispersion models used in CFD to study the airborne spread of COVID19. Mehade Hussain S; Goel S; Kadapa C; Aristodemou E Mater Today Proc; 2022; 64():1349-1356. PubMed ID: 35495177 [TBL] [Abstract][Full Text] [Related]
11. A CFD study of the transport and fate of airborne droplets in a ventilated office: The role of droplet-droplet interactions. Gomez-Flores A; Hwang G; Ilyas S; Kim H Front Environ Sci Eng; 2022; 16(3):31. PubMed ID: 34221534 [TBL] [Abstract][Full Text] [Related]
12. On respiratory droplets and face masks. Dbouk T; Drikakis D Phys Fluids (1994); 2020 Jun; 32(6):063303. PubMed ID: 32574231 [TBL] [Abstract][Full Text] [Related]
13. The effect of natural ventilation on airborne transmission of the COVID-19 virus spread by sneezing in the classroom. Firatoglu ZA Sci Total Environ; 2023 Oct; 896():165113. PubMed ID: 37391140 [TBL] [Abstract][Full Text] [Related]
14. Development of a 3D Eulerian/Lagrangian Aircraft Icing Simulation Solver Based on OpenFOAM. Han H; Yin Z; Ning Y; Liu H Entropy (Basel); 2022 Sep; 24(10):. PubMed ID: 37420385 [TBL] [Abstract][Full Text] [Related]
15. The effect of relative air humidity on the evaporation timescales of a human sneeze. Stiehl B; Shrestha R; Schroeder S; Delgado J; Bazzi A; Reyes J; Kinzel M; Ahmed K AIP Adv; 2022 Jul; 12(7):075210. PubMed ID: 35989720 [TBL] [Abstract][Full Text] [Related]
16. Transmission of pathogen-laden expiratory droplets in a coach bus. Yang X; Ou C; Yang H; Liu L; Song T; Kang M; Lin H; Hang J J Hazard Mater; 2020 Oct; 397():122609. PubMed ID: 32361671 [TBL] [Abstract][Full Text] [Related]
17. 3D modelling and simulation of the dispersion of droplets and drops carrying the SARS-CoV-2 virus in a railway transport coach. Armand P; Tâche J Sci Rep; 2022 Mar; 12(1):4025. PubMed ID: 35256741 [TBL] [Abstract][Full Text] [Related]
18. Practical implications of the erroneous treatment of exposure time in the Eulerian hemolysis power law model. Faghih MM; Craven BA; Sharp MK Artif Organs; 2023 Sep; 47(9):1531-1538. PubMed ID: 37032625 [TBL] [Abstract][Full Text] [Related]
19. Evaluation of airborne disease infection risks in an airliner cabin using the Lagrangian-based Wells-Riley approach. Yan Y; Li X; Shang Y; Tu J Build Environ; 2017 Aug; 121():79-92. PubMed ID: 32287972 [TBL] [Abstract][Full Text] [Related]
20. Finding the proper position of supply and return registers of air condition system in a conference hall in term of COVID-19 virus spread. Rahvard AJ; Karami S; Lakzian E Int J Refrig; 2023 Jan; 145():78-89. PubMed ID: 36281435 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]