BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 34658796)

  • 1. Mislocalization of Nucleocytoplasmic Transport Proteins in Human Huntington's Disease PSC-Derived Striatal Neurons.
    Lange J; Wood-Kaczmar A; Ali A; Farag S; Ghosh R; Parker J; Casey C; Uno Y; Kunugi A; Ferretti P; Andre R; Tabrizi SJ
    Front Cell Neurosci; 2021; 15():742763. PubMed ID: 34658796
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mutant Huntingtin Disrupts the Nuclear Pore Complex.
    Grima JC; Daigle JG; Arbez N; Cunningham KC; Zhang K; Ochaba J; Geater C; Morozko E; Stocksdale J; Glatzer JC; Pham JT; Ahmed I; Peng Q; Wadhwa H; Pletnikova O; Troncoso JC; Duan W; Snyder SH; Ranum LPW; Thompson LM; Lloyd TE; Ross CA; Rothstein JD
    Neuron; 2017 Apr; 94(1):93-107.e6. PubMed ID: 28384479
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neuron type-specific increase in lamin B1 contributes to nuclear dysfunction in Huntington's disease.
    Alcalá-Vida R; Garcia-Forn M; Castany-Pladevall C; Creus-Muncunill J; Ito Y; Blanco E; Golbano A; Crespí-Vázquez K; Parry A; Slater G; Samarajiwa S; Peiró S; Di Croce L; Narita M; Pérez-Navarro E
    EMBO Mol Med; 2021 Feb; 13(2):e12105. PubMed ID: 33369245
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Full length mutant huntingtin is required for altered Ca2+ signaling and apoptosis of striatal neurons in the YAC mouse model of Huntington's disease.
    Zhang H; Li Q; Graham RK; Slow E; Hayden MR; Bezprozvanny I
    Neurobiol Dis; 2008 Jul; 31(1):80-8. PubMed ID: 18502655
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Loss of huntingtin function slows synaptic vesicle endocytosis in striatal neurons from the htt
    McAdam RL; Morton A; Gordon SL; Alterman JF; Khvorova A; Cousin MA; Smillie KJ
    Neurobiol Dis; 2020 Feb; 134():104637. PubMed ID: 31614197
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Progerin-Induced Transcriptional Changes in Huntington's Disease Human Pluripotent Stem Cell-Derived Neurons.
    Cohen-Carmon D; Sorek M; Lerner V; Divya MS; Nissim-Rafinia M; Yarom Y; Meshorer E
    Mol Neurobiol; 2020 Mar; 57(3):1768-1777. PubMed ID: 31834602
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human Huntington's disease pluripotent stem cell-derived microglia develop normally but are abnormally hyper-reactive and release elevated levels of reactive oxygen species.
    O'Regan GC; Farag SH; Casey CS; Wood-Kaczmar A; Pocock JM; Tabrizi SJ; Andre R
    J Neuroinflammation; 2021 Apr; 18(1):94. PubMed ID: 33874957
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Allele-selective inhibition of mutant huntingtin expression with antisense oligonucleotides targeting the expanded CAG repeat.
    Gagnon KT; Pendergraff HM; Deleavey GF; Swayze EE; Potier P; Randolph J; Roesch EB; Chattopadhyaya J; Damha MJ; Bennett CF; Montaillier C; Lemaitre M; Corey DR
    Biochemistry; 2010 Nov; 49(47):10166-78. PubMed ID: 21028906
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amelioration of Huntington's disease phenotype in astrocytes derived from iPSC-derived neural progenitor cells of Huntington's disease monkeys.
    Cho IK; Yang B; Forest C; Qian L; Chan AWS
    PLoS One; 2019; 14(3):e0214156. PubMed ID: 30897183
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antisense oligonucleotide-mediated correction of transcriptional dysregulation is correlated with behavioral benefits in the YAC128 mouse model of Huntington's disease.
    Stanek LM; Yang W; Angus S; Sardi PS; Hayden MR; Hung GH; Bennett CF; Cheng SH; Shihabuddin LS
    J Huntingtons Dis; 2013; 2(2):217-28. PubMed ID: 25063516
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein changes in synaptosomes of Huntington's disease knock-in mice are dependent on age and brain region.
    Sapp E; Seeley C; Iuliano M; Weisman E; Vodicka P; DiFiglia M; Kegel-Gleason KB
    Neurobiol Dis; 2020 Jul; 141():104950. PubMed ID: 32439598
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Msh2 acts in medium-spiny striatal neurons as an enhancer of CAG instability and mutant huntingtin phenotypes in Huntington's disease knock-in mice.
    Kovalenko M; Dragileva E; St Claire J; Gillis T; Guide JR; New J; Dong H; Kucherlapati R; Kucherlapati MH; Ehrlich ME; Lee JM; Wheeler VC
    PLoS One; 2012; 7(9):e44273. PubMed ID: 22970194
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeting CAG repeat RNAs reduces Huntington's disease phenotype independently of huntingtin levels.
    Rué L; Bañez-Coronel M; Creus-Muncunill J; Giralt A; Alcalá-Vida R; Mentxaka G; Kagerbauer B; Zomeño-Abellán MT; Aranda Z; Venturi V; Pérez-Navarro E; Estivill X; Martí E
    J Clin Invest; 2016 Nov; 126(11):4319-4330. PubMed ID: 27721240
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Specific caspase interactions and amplification are involved in selective neuronal vulnerability in Huntington's disease.
    Hermel E; Gafni J; Propp SS; Leavitt BR; Wellington CL; Young JE; Hackam AS; Logvinova AV; Peel AL; Chen SF; Hook V; Singaraja R; Krajewski S; Goldsmith PC; Ellerby HM; Hayden MR; Bredesen DE; Ellerby LM
    Cell Death Differ; 2004 Apr; 11(4):424-38. PubMed ID: 14713958
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mutant huntingtin messenger RNA forms neuronal nuclear clusters in rodent and human brains.
    Ly S; Didiot MC; Ferguson CM; Coles AH; Miller R; Chase K; Echeverria D; Wang F; Sadri-Vakili G; Aronin N; Khvorova A
    Brain Commun; 2022; 4(6):fcac248. PubMed ID: 36458209
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energy Metabolism and Mitochondrial Superoxide Anion Production in Pre-symptomatic Striatal Neurons Derived from Human-Induced Pluripotent Stem Cells Expressing Mutant Huntingtin.
    Hamilton J; Brustovetsky T; Sridhar A; Pan Y; Cummins TR; Meyer JS; Brustovetsky N
    Mol Neurobiol; 2020 Feb; 57(2):668-684. PubMed ID: 31435904
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel BAC Mouse Model of Huntington's Disease with 225 CAG Repeats Exhibits an Early Widespread and Stable Degenerative Phenotype.
    Wegrzynowicz M; Bichell TJ; Soares BD; Loth MK; McGlothan JS; Mori S; Alikhan FS; Hua K; Coughlin JM; Holt HK; Jetter CS; Pomper MG; Osmand AP; Guilarte TR; Bowman AB
    J Huntingtons Dis; 2015; 4(1):17-36. PubMed ID: 26333255
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expanded huntingtin activates the c-Jun terminal kinase/c-Jun pathway prior to aggregate formation in striatal neurons in culture.
    Garcia M; Charvin D; Caboche J
    Neuroscience; 2004; 127(4):859-70. PubMed ID: 15312898
    [TBL] [Abstract][Full Text] [Related]  

  • 19. AAV5-miHTT-mediated huntingtin lowering improves brain health in a Huntington's disease mouse model.
    Thomson SB; Stam A; Brouwers C; Fodale V; Bresciani A; Vermeulen M; Mostafavi S; Petkau TL; Hill A; Yung A; Russell-Schulz B; Kozlowski P; MacKay A; Ma D; Beg MF; Evers MM; Vallès A; Leavitt BR
    Brain; 2023 Jun; 146(6):2298-2315. PubMed ID: 36508327
    [TBL] [Abstract][Full Text] [Related]  

  • 20. N-terminal mutant huntingtin deposition correlates with CAG repeat length and symptom onset, but not neuronal loss in Huntington's disease.
    Layburn FE; Tan AYS; Mehrabi NF; Curtis MA; Tippett LJ; Turner CP; Riguet N; Aeschbach L; Lashuel HA; Dragunow M; Faull RLM; Singh-Bains MK
    Neurobiol Dis; 2022 Nov; 174():105884. PubMed ID: 36220612
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.