These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 34659152)

  • 1. PepVAE: Variational Autoencoder Framework for Antimicrobial Peptide Generation and Activity Prediction.
    Dean SN; Alvarez JAE; Zabetakis D; Walper SA; Malanoski AP
    Front Microbiol; 2021; 12():725727. PubMed ID: 34659152
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Variational Autoencoder for Generation of Antimicrobial Peptides.
    Dean SN; Walper SA
    ACS Omega; 2020 Aug; 5(33):20746-20754. PubMed ID: 32875208
    [TBL] [Abstract][Full Text] [Related]  

  • 3. AGRAMP: machine learning models for predicting antimicrobial peptides against phytopathogenic bacteria.
    Shao J; Zhao Y; Wei W; Vaisman II
    Front Microbiol; 2024; 15():1304044. PubMed ID: 38516021
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction and bioactivity of small-molecule antimicrobial peptides from
    Fu Q; Cao D; Sun J; Liu X; Li H; Shu C; Liu R
    Front Microbiol; 2023; 14():1124672. PubMed ID: 37007486
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diff-AMP: tailored designed antimicrobial peptide framework with all-in-one generation, identification, prediction and optimization.
    Wang R; Wang T; Zhuo L; Wei J; Fu X; Zou Q; Yao X
    Brief Bioinform; 2024 Jan; 25(2):. PubMed ID: 38446739
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep Learning Analysis of Vibrational Spectra of Bacterial Lysate for Rapid Antimicrobial Susceptibility Testing.
    Thrift WJ; Ronaghi S; Samad M; Wei H; Nguyen DG; Cabuslay AS; Groome CE; Santiago PJ; Baldi P; Hochbaum AI; Ragan R
    ACS Nano; 2020 Nov; 14(11):15336-15348. PubMed ID: 33095005
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep Generative Models for Molecular Science.
    Jørgensen PB; Schmidt MN; Winther O
    Mol Inform; 2018 Jan; 37(1-2):. PubMed ID: 29405647
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ProT-Diff: A Modularized and Efficient Strategy for De Novo Generation of Antimicrobial Peptide Sequences by Integrating Protein Language and Diffusion Models.
    Wang XF; Tang JY; Sun J; Dorje S; Sun TQ; Peng B; Ji XW; Li Z; Zhang XE; Wang DB
    Adv Sci (Weinh); 2024 Sep; ():e2406305. PubMed ID: 39319609
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generative model based on junction tree variational autoencoder for HOMO value prediction and molecular optimization.
    Kondratyev V; Dryzhakov M; Gimadiev T; Slutskiy D
    J Cheminform; 2023 Feb; 15(1):11. PubMed ID: 36732800
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep Learning for Novel Antimicrobial Peptide Design.
    Wang C; Garlick S; Zloh M
    Biomolecules; 2021 Mar; 11(3):. PubMed ID: 33810011
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of Potential miRNA-Disease Associations Through a Novel Unsupervised Deep Learning Framework with Variational Autoencoder.
    Zhang L; Chen X; Yin J
    Cells; 2019 Sep; 8(9):. PubMed ID: 31489920
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fault Detection and Diagnosis in Industrial Processes with Variational Autoencoder: A Comprehensive Study.
    Zhu J; Jiang M; Liu Z
    Sensors (Basel); 2021 Dec; 22(1):. PubMed ID: 35009769
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Searching for protein variants with desired properties using deep generative models.
    Li Y; Yao Y; Xia Y; Tang M
    BMC Bioinformatics; 2023 Jul; 24(1):297. PubMed ID: 37480001
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction and Activity of a Cationic α-Helix Antimicrobial Peptide ZM-804 from Maize.
    Hassan MF; Qutb AM; Dong W
    Int J Mol Sci; 2021 Mar; 22(5):. PubMed ID: 33807972
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accelerating the discovery of anticancer peptides targeting lung and breast cancers with the Wasserstein autoencoder model and PSO algorithm.
    Yang L; Yang G; Bing Z; Tian Y; Huang L; Niu Y; Yang L
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35945135
    [TBL] [Abstract][Full Text] [Related]  

  • 16. sAMP-VGG16: Force-field assisted image-based deep neural network prediction model for short antimicrobial peptides.
    Pandey P; Srivastava A
    Proteins; 2024 Mar; ():. PubMed ID: 38520179
    [TBL] [Abstract][Full Text] [Related]  

  • 17. druGAN: An Advanced Generative Adversarial Autoencoder Model for de Novo Generation of New Molecules with Desired Molecular Properties in Silico.
    Kadurin A; Nikolenko S; Khrabrov K; Aliper A; Zhavoronkov A
    Mol Pharm; 2017 Sep; 14(9):3098-3104. PubMed ID: 28703000
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Attention Autoencoder for Generative Latent Representational Learning in Anomaly Detection.
    Oluwasanmi A; Aftab MU; Baagyere E; Qin Z; Ahmad M; Mazzara M
    Sensors (Basel); 2021 Dec; 22(1):. PubMed ID: 35009666
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lipid-Based Liquid Crystals As Carriers for Antimicrobial Peptides: Phase Behavior and Antimicrobial Effect.
    Boge L; Bysell H; Ringstad L; Wennman D; Umerska A; Cassisa V; Eriksson J; Joly-Guillou ML; Edwards K; Andersson M
    Langmuir; 2016 May; 32(17):4217-28. PubMed ID: 27033359
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antifungal Activity and Physicochemical Properties of a Novel Antimicrobial Protein AMP-17 from
    Yang LB; Guo G; Zhao XY; Su PP; Fu P; Peng J; Xiu JF; Li BY
    Pol J Microbiol; 2019 Sep; 68(3):383-390. PubMed ID: 31880884
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.