BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 34659586)

  • 1. Human-Inspired Robotic Eye-Hand Coordination Enables New Communication Channels Between Humans and Robots.
    Olson S; Abd M; Engeberg ED
    Int J Soc Robot; 2021 Aug; 13(5):1033-1046. PubMed ID: 34659586
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gaze Point Tracking Based on a Robotic Body-Head-Eye Coordination Method.
    Feng X; Wang Q; Cong H; Zhang Y; Qiu M
    Sensors (Basel); 2023 Jul; 23(14):. PubMed ID: 37514595
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Need for Combining Implicit and Explicit Communication in Cooperative Robotic Systems.
    Gildert N; Millard AG; Pomfret A; Timmis J
    Front Robot AI; 2018; 5():65. PubMed ID: 33500944
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of Gaze Cues in Interpersonal Motor Coordination: Towards Higher Affiliation in Human-Robot Interaction.
    Khoramshahi M; Shukla A; Raffard S; Bardy BG; Billard A
    PLoS One; 2016; 11(6):e0156874. PubMed ID: 27281341
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Soft object deformation monitoring and learning for model-based robotic hand manipulation.
    Cretu AM; Payeur P; Petriu EM
    IEEE Trans Syst Man Cybern B Cybern; 2012 Jun; 42(3):740-53. PubMed ID: 22207640
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bio-inspired grasp control in a robotic hand with massive sensorial input.
    Ascari L; Bertocchi U; Corradi P; Laschi C; Dario P
    Biol Cybern; 2009 Feb; 100(2):109-28. PubMed ID: 19066937
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling and evaluation of hand-eye coordination of surgical robotic system on task performance.
    Gao Y; Wang S; Li J; Li A; Liu H; Xing Y
    Int J Med Robot; 2017 Dec; 13(4):. PubMed ID: 28471060
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human but not robotic gaze facilitates action prediction.
    Tidoni E; Holle H; Scandola M; Schindler I; Hill L; Cross ES
    iScience; 2022 Jun; 25(6):104462. PubMed ID: 35707718
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anthropomorphic Robotic Eyes: Structural Design and Non-Verbal Communication Effectiveness.
    Penčić M; Čavić M; Oros D; Vrgović P; Babković K; Orošnjak M; Čavić D
    Sensors (Basel); 2022 Apr; 22(8):. PubMed ID: 35459046
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3-D-Gaze-Based Robotic Grasping Through Mimicking Human Visuomotor Function for People With Motion Impairments.
    Li S; Zhang X; Webb JD
    IEEE Trans Biomed Eng; 2017 Dec; 64(12):2824-2835. PubMed ID: 28278455
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Grasp Strategy of a Robot Passer Influences Performance and Quality of the Robot-Human Object Handover.
    Ortenzi V; Cini F; Pardi T; Marturi N; Stolkin R; Corke P; Controzzi M
    Front Robot AI; 2020; 7():542406. PubMed ID: 33501313
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human Preferences for Robot Eye Gaze in Human-to-Robot Handovers.
    Faibish T; Kshirsagar A; Hoffman G; Edan Y
    Int J Soc Robot; 2022; 14(4):995-1012. PubMed ID: 35079297
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direction of Slip Detection for Adaptive Grasp Force Control with a Dexterous Robotic Hand.
    Abd MA; Gonzalez IJ; Colestock TC; Kent BA; Engeberg ED
    IEEE ASME Int Conf Adv Intell Mechatron; 2018 Jul; 2018():21-27. PubMed ID: 32042473
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mixed [Formula: see text]-synthesis tracking control and disturbance rejection in a robotic digit of an impaired human hand for anthropomorphic coordination.
    Iqbal M; Imtiaz J; Mughal AM
    Biol Cybern; 2023 Jun; 117(3):221-247. PubMed ID: 37222800
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Robotic gaze and human views: A systematic exploration of robotic gaze aversion and its effects on human behaviors and attitudes.
    Koller M; Weiss A; Hirschmanner M; Vincze M
    Front Robot AI; 2023; 10():1062714. PubMed ID: 37102131
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two degree-of-freedom robotic eye: design, modeling, and learning-based control in foveation and smooth pursuit.
    Rajendran SK; Wei Q; Zhang F
    Bioinspir Biomim; 2021 Jun; 16(4):. PubMed ID: 33951619
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Journey from human hands to robot hands: biological inspiration of anthropomorphic robotic manipulators.
    Han MS; Harnett CK
    Bioinspir Biomim; 2024 Feb; 19(2):. PubMed ID: 38316033
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dual Arm Co-Manipulation Architecture with Enhanced Human-Robot Communication for Large Part Manipulation.
    Ibarguren A; Eimontaite I; Outón JL; Fletcher S
    Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33137977
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of an evaluation function for eye-hand coordination robotic therapy.
    Pernalete N; Tang F; Chang SM; Cheng FY; Vetter P; Stegemann M; Grantner J
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975423. PubMed ID: 22275624
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hand-eye coordination during sequential tasks.
    Ballard DH; Hayhoe MM; Li F; Whitehead SD
    Philos Trans R Soc Lond B Biol Sci; 1992 Sep; 337(1281):331-8; discussion 338-9. PubMed ID: 1359587
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.