BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 34660284)

  • 1. Application of Deep Convolution Network to Automated Image Segmentation of Chest CT for Patients With Tumor.
    Xie H; Zhang JF; Li Q
    Front Oncol; 2021; 11():719398. PubMed ID: 34660284
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automated segmentation of the left ventricle from MR cine imaging based on deep learning architecture.
    Qin W; Wu Y; Li S; Chen Y; Yang Y; Liu X; Zheng H; Liang D; Hu Z
    Biomed Phys Eng Express; 2020 Feb; 6(2):025009. PubMed ID: 33438635
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep-learning-based detection and segmentation of organs at risk in nasopharyngeal carcinoma computed tomographic images for radiotherapy planning.
    Liang S; Tang F; Huang X; Yang K; Zhong T; Hu R; Liu S; Yuan X; Zhang Y
    Eur Radiol; 2019 Apr; 29(4):1961-1967. PubMed ID: 30302589
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved accuracy of auto-segmentation of organs at risk in radiotherapy planning for nasopharyngeal carcinoma based on fully convolutional neural network deep learning.
    Peng Y; Liu Y; Shen G; Chen Z; Chen M; Miao J; Zhao C; Deng J; Qi Z; Deng X
    Oral Oncol; 2023 Jan; 136():106261. PubMed ID: 36446186
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automatic liver segmentation by integrating fully convolutional networks into active contour models.
    Guo X; Schwartz LH; Zhao B
    Med Phys; 2019 Oct; 46(10):4455-4469. PubMed ID: 31356688
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Segmentation of liver tumors with abdominal computed tomography using fully convolutional networks.
    Chen CI; Lu NH; Huang YH; Liu KY; Hsu SY; Matsushima A; Wang YM; Chen TB
    J Xray Sci Technol; 2022; 30(5):953-966. PubMed ID: 35754254
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fully convolutional multi-scale residual DenseNets for cardiac segmentation and automated cardiac diagnosis using ensemble of classifiers.
    Khened M; Kollerathu VA; Krishnamurthi G
    Med Image Anal; 2019 Jan; 51():21-45. PubMed ID: 30390512
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fully automatic multi-organ segmentation for head and neck cancer radiotherapy using shape representation model constrained fully convolutional neural networks.
    Tong N; Gou S; Yang S; Ruan D; Sheng K
    Med Phys; 2018 Oct; 45(10):4558-4567. PubMed ID: 30136285
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An application of cascaded 3D fully convolutional networks for medical image segmentation.
    Roth HR; Oda H; Zhou X; Shimizu N; Yang Y; Hayashi Y; Oda M; Fujiwara M; Misawa K; Mori K
    Comput Med Imaging Graph; 2018 Jun; 66():90-99. PubMed ID: 29573583
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fully Automated Gross Tumor Volume Delineation From PET in Head and Neck Cancer Using Deep Learning Algorithms.
    Shiri I; Arabi H; Sanaat A; Jenabi E; Becker M; Zaidi H
    Clin Nucl Med; 2021 Nov; 46(11):872-883. PubMed ID: 34238799
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep convolutional neural network for segmentation of thoracic organs-at-risk using cropped 3D images.
    Feng X; Qing K; Tustison NJ; Meyer CH; Chen Q
    Med Phys; 2019 May; 46(5):2169-2180. PubMed ID: 30830685
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fully connected network with multi-scale dilation convolution module in evaluating atrial septal defect based on MRI segmentation.
    Chen H; Yan S; Xie M; Ye Y; Ye Y; Zhu D; Su L; Huang J
    Comput Methods Programs Biomed; 2022 Mar; 215():106608. PubMed ID: 35063713
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Double-branched and area-constraint fully convolutional networks for automated serous retinal detachment segmentation in SD-OCT images.
    Gao K; Niu S; Ji Z; Wu M; Chen Q; Xu R; Yuan S; Fan W; Chen Y; Dong J
    Comput Methods Programs Biomed; 2019 Jul; 176():69-80. PubMed ID: 31200913
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep learning of the sectional appearances of 3D CT images for anatomical structure segmentation based on an FCN voting method.
    Zhou X; Takayama R; Wang S; Hara T; Fujita H
    Med Phys; 2017 Oct; 44(10):5221-5233. PubMed ID: 28730602
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shape constrained fully convolutional DenseNet with adversarial training for multiorgan segmentation on head and neck CT and low-field MR images.
    Tong N; Gou S; Yang S; Cao M; Sheng K
    Med Phys; 2019 Jun; 46(6):2669-2682. PubMed ID: 31002188
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Segmentation of organs-at-risks in head and neck CT images using convolutional neural networks.
    Ibragimov B; Xing L
    Med Phys; 2017 Feb; 44(2):547-557. PubMed ID: 28205307
    [TBL] [Abstract][Full Text] [Related]  

  • 17. AnatomyNet: Deep learning for fast and fully automated whole-volume segmentation of head and neck anatomy.
    Zhu W; Huang Y; Zeng L; Chen X; Liu Y; Qian Z; Du N; Fan W; Xie X
    Med Phys; 2019 Feb; 46(2):576-589. PubMed ID: 30480818
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Application of Improved Unet Network in the Recognition and Segmentation of Hemorrhage Regions in Brain CT Images].
    Zhou ZS; Chen XM; Zhang HY; Wan HL; Zhao JY; Zhang T; Wang XY
    Sichuan Da Xue Xue Bao Yi Xue Ban; 2022 Jan; 53(1):114-120. PubMed ID: 35048610
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A coronary artery CTA segmentation approach based on deep learning.
    Huang C; Yin C
    J Xray Sci Technol; 2022; 30(2):245-259. PubMed ID: 34957947
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automated deep learning-based segmentation of COVID-19 lesions from chest computed tomography images.
    Salehi M; Ardekani MA; Taramsari AB; Ghaffari H; Haghparast M
    Pol J Radiol; 2022; 87():e478-e486. PubMed ID: 36091652
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.