BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 34660550)

  • 1. "Microbial Wars" in a Stirred Tank Bioreactor: Investigating the Co-Cultures of
    Boruta T; Ścigaczewska A; Bizukojć M
    Front Bioeng Biotechnol; 2021; 9():713639. PubMed ID: 34660550
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production of secondary metabolites in stirred tank bioreactor co-cultures of
    Boruta T; Ścigaczewska A; Bizukojć M
    Front Bioeng Biotechnol; 2022; 10():1011220. PubMed ID: 36246390
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative Morphological Analysis of Filamentous Microorganisms in Cocultures and Monocultures:
    Ścigaczewska A; Boruta T; Bizukojć M
    Biomolecules; 2021 Nov; 11(11):. PubMed ID: 34827738
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of the Coculture Initiation Method on the Production of Secondary Metabolites in Bioreactor Cocultures of
    Boruta T; Ścigaczewska A; Ruda A; Bizukojć M
    Molecules; 2023 Aug; 28(16):. PubMed ID: 37630296
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The repertoire and levels of secondary metabolites in microbial cocultures depend on the inoculation ratio: a case study involving Aspergillus terreus and Streptomyces rimosus.
    Boruta T; Englart G; Foryś M; Pawlikowska W
    Biotechnol Lett; 2024 Aug; 46(4):601-614. PubMed ID: 38844646
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Co-cultivation of filamentous microorganisms in the presence of aluminum oxide microparticles.
    Boruta T; Antecka A
    Appl Microbiol Biotechnol; 2022 Sep; 106(17):5459-5477. PubMed ID: 35906994
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigating the Stirred Tank Bioreactor Co-Cultures of the Secondary Metabolite Producers
    Boruta T; Ścigaczewska A; Bizukojć M
    Biomolecules; 2023 Dec; 13(12):. PubMed ID: 38136619
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Induction of secondary metabolism of Aspergillus terreus ATCC 20542 in the batch bioreactor cultures.
    Boruta T; Bizukojc M
    Appl Microbiol Biotechnol; 2016 Apr; 100(7):3009-22. PubMed ID: 26603760
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluating the outcomes of submerged co-cultivation: production of lovastatin and other secondary metabolites by Aspergillus terreus in fungal co-cultures.
    Boruta T; Milczarek I; Bizukojc M
    Appl Microbiol Biotechnol; 2019 Jul; 103(14):5593-5605. PubMed ID: 31098686
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced Oxytetracycline Production by
    Boruta T; Ścigaczewska A
    Molecules; 2021 Oct; 26(19):. PubMed ID: 34641580
    [TBL] [Abstract][Full Text] [Related]  

  • 11.
    Laraib Q; Shafique M; Jabeen N; Naz SA; Nawaz HR; Solangi B; Zubair A; Sohail M
    Pol J Microbiol; 2020 Sep; 69(2):193-203. PubMed ID: 32548988
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Confrontation between Penicillium rubens and Aspergillus terreus: Investigating the production of fungal secondary metabolites in submerged co-cultures.
    Boruta T; Marczyk A; Rychta K; Przydacz K; Bizukojc M
    J Biosci Bioeng; 2020 Nov; 130(5):503-513. PubMed ID: 32758403
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New milliliter-scale stirred tank bioreactors for the cultivation of mycelium forming microorganisms.
    Hortsch R; Stratmann A; Weuster-Botz D
    Biotechnol Bioeng; 2010 Jun; 106(3):443-51. PubMed ID: 20198653
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioprocess Engineering Aspects of the Cultivation of a Lovastatin Producer Aspergillus terreus.
    Bizukojc M; Ledakowicz S
    Adv Biochem Eng Biotechnol; 2015; 149():133-70. PubMed ID: 25633258
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Complete genome sequence of lovastatin producer Aspergillus terreus ATCC 20542 and evaluation of genomic diversity among A. terreus strains.
    Ryngajłło M; Boruta T; Bizukojć M
    Appl Microbiol Biotechnol; 2021 Feb; 105(4):1615-1627. PubMed ID: 33515286
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphoproteome Dynamics of Streptomyces rimosus during Submerged Growth and Antibiotic Production.
    Šarić E; Quinn GA; Nalpas N; Paradžik T; Kazazić S; Filić Ž; Šemanjski M; Herron P; Hunter I; Maček B; Vujaklija D
    mSystems; 2022 Oct; 7(5):e0019922. PubMed ID: 36094082
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A bioprocess perspective on the production of secondary metabolites by Streptomyces in submerged co-cultures.
    Boruta T
    World J Microbiol Biotechnol; 2021 Sep; 37(10):171. PubMed ID: 34490503
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Secondary Metabolite Variation and Bioactivities of Two Marine
    Wang Y; Glukhov E; He Y; Liu Y; Zhou L; Ma X; Hu X; Hong P; Gerwick WH; Zhang Y
    Antibiotics (Basel); 2022 Apr; 11(4):. PubMed ID: 35453264
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lovastatin production by
    Kargar S; Mohseny Takloo S; Jalili H; NoorMohammedi J; Babaei A; Bizukojc M
    Prep Biochem Biotechnol; 2023; 53(3):247-254. PubMed ID: 35594264
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular Biology Methods in Streptomyces rimosus, a Producer of Oxytetracycline.
    Slemc L; Pikl Š; Petković H; Avbelj M
    Methods Mol Biol; 2021; 2296():303-330. PubMed ID: 33977456
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.