These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
280 related articles for article (PubMed ID: 34660559)
1. Advances of Hydrogel-Based Bioprinting for Cartilage Tissue Engineering. Han X; Chang S; Zhang M; Bian X; Li C; Li D Front Bioeng Biotechnol; 2021; 9():746564. PubMed ID: 34660559 [TBL] [Abstract][Full Text] [Related]
2. Recent progress in extrusion 3D bioprinting of hydrogel biomaterials for tissue regeneration: a comprehensive review with focus on advanced fabrication techniques. Askari M; Afzali Naniz M; Kouhi M; Saberi A; Zolfagharian A; Bodaghi M Biomater Sci; 2021 Feb; 9(3):535-573. PubMed ID: 33185203 [TBL] [Abstract][Full Text] [Related]
3. 3D Bioprinting Photo-Crosslinkable Hydrogels for Bone and Cartilage Repair. Mei Q; Rao J; Bei HP; Liu Y; Zhao X Int J Bioprint; 2021; 7(3):367. PubMed ID: 34286152 [TBL] [Abstract][Full Text] [Related]
4. Application of Extrusion-Based Hydrogel Bioprinting for Cartilage Tissue Engineering. You F; Eames BF; Chen X Int J Mol Sci; 2017 Jul; 18(7):. PubMed ID: 28737701 [TBL] [Abstract][Full Text] [Related]
5. Bio-inspired hydrogel composed of hyaluronic acid and alginate as a potential bioink for 3D bioprinting of articular cartilage engineering constructs. Antich C; de Vicente J; Jiménez G; Chocarro C; Carrillo E; Montañez E; Gálvez-Martín P; Marchal JA Acta Biomater; 2020 Apr; 106():114-123. PubMed ID: 32027992 [TBL] [Abstract][Full Text] [Related]
6. Three-Dimensional Bioprinting and Its Potential in the Field of Articular Cartilage Regeneration. Mouser VHM; Levato R; Bonassar LJ; D'Lima DD; Grande DA; Klein TJ; Saris DBF; Zenobi-Wong M; Gawlitta D; Malda J Cartilage; 2017 Oct; 8(4):327-340. PubMed ID: 28934880 [TBL] [Abstract][Full Text] [Related]
7. 3D bioprinting mesenchymal stem cell-laden construct with core-shell nanospheres for cartilage tissue engineering. Zhu W; Cui H; Boualam B; Masood F; Flynn E; Rao RD; Zhang ZY; Zhang LG Nanotechnology; 2018 May; 29(18):185101. PubMed ID: 29446757 [TBL] [Abstract][Full Text] [Related]
8. Natural Hydrogel-Based Bio-Inks for 3D Bioprinting in Tissue Engineering: A Review. Fatimi A; Okoro OV; Podstawczyk D; Siminska-Stanny J; Shavandi A Gels; 2022 Mar; 8(3):. PubMed ID: 35323292 [TBL] [Abstract][Full Text] [Related]
9. Application of 3D-bioprinted nanocellulose and cellulose derivative-based bio-inks in bone and cartilage tissue engineering. Lin L; Jiang S; Yang J; Qiu J; Jiao X; Yue X; Ke X; Yang G; Zhang L Int J Bioprint; 2023; 9(1):637. PubMed ID: 36844245 [TBL] [Abstract][Full Text] [Related]
10. Bioprinting and its applications in tissue engineering and regenerative medicine. Aljohani W; Ullah MW; Zhang X; Yang G Int J Biol Macromol; 2018 Feb; 107(Pt A):261-275. PubMed ID: 28870749 [TBL] [Abstract][Full Text] [Related]
11. Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications. Xu T; Binder KW; Albanna MZ; Dice D; Zhao W; Yoo JJ; Atala A Biofabrication; 2013 Mar; 5(1):015001. PubMed ID: 23172542 [TBL] [Abstract][Full Text] [Related]
12. Converging functionality: Strategies for 3D hybrid-construct biofabrication and the role of composite biomaterials for skeletal regeneration. Alcala-Orozco CR; Cui X; Hooper GJ; Lim KS; Woodfield TBF Acta Biomater; 2021 Sep; 132():188-216. PubMed ID: 33713862 [TBL] [Abstract][Full Text] [Related]
13. Addition of Platelet-Rich Plasma to Silk Fibroin Hydrogel Bioprinting for Cartilage Regeneration. Li Z; Zhang X; Yuan T; Zhang Y; Luo C; Zhang J; Liu Y; Fan W Tissue Eng Part A; 2020 Aug; 26(15-16):886-895. PubMed ID: 32031056 [TBL] [Abstract][Full Text] [Related]
14. 3D bioprinting of urethra with PCL/PLCL blend and dual autologous cells in fibrin hydrogel: An in vitro evaluation of biomimetic mechanical property and cell growth environment. Zhang K; Fu Q; Yoo J; Chen X; Chandra P; Mo X; Song L; Atala A; Zhao W Acta Biomater; 2017 Mar; 50():154-164. PubMed ID: 27940192 [TBL] [Abstract][Full Text] [Related]
15. Translational Application of 3D Bioprinting for Cartilage Tissue Engineering. McGivern S; Boutouil H; Al-Kharusi G; Little S; Dunne NJ; Levingstone TJ Bioengineering (Basel); 2021 Oct; 8(10):. PubMed ID: 34677217 [TBL] [Abstract][Full Text] [Related]
16. Three-Dimensional Digital Light-Processing Bioprinting Using Silk Fibroin-Based Bio-Ink: Recent Advancements in Biomedical Applications. Sultan MT; Lee OJ; Lee JS; Park CH Biomedicines; 2022 Dec; 10(12):. PubMed ID: 36551978 [TBL] [Abstract][Full Text] [Related]
17. A novel bioprinting method and system for forming hybrid tissue engineering constructs. Shanjani Y; Pan CC; Elomaa L; Yang Y Biofabrication; 2015 Dec; 7(4):045008. PubMed ID: 26685102 [TBL] [Abstract][Full Text] [Related]
18. Optimization of mechanical stiffness and cell density of 3D bioprinted cell-laden scaffolds improves extracellular matrix mineralization and cellular organization for bone tissue engineering. Zhang J; Wehrle E; Adamek P; Paul GR; Qin XH; Rubert M; Müller R Acta Biomater; 2020 Sep; 114():307-322. PubMed ID: 32673752 [TBL] [Abstract][Full Text] [Related]
19. Noninvasive Three-Dimensional Ning L; Zhu N; Smith A; Rajaram A; Hou H; Srinivasan S; Mohabatpour F; He L; Mclnnes A; Serpooshan V; Papagerakis P; Chen X ACS Appl Mater Interfaces; 2021 Jun; 13(22):25611-25623. PubMed ID: 34038086 [TBL] [Abstract][Full Text] [Related]
20. Exploiting the role of nanoparticles for use in hydrogel-based bioprinting applications: concept, design, and recent advances. Chakraborty A; Roy A; Ravi SP; Paul A Biomater Sci; 2021 Sep; 9(19):6337-6354. PubMed ID: 34397056 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]