These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 34660702)

  • 1. Hand-Object Interaction: From Human Demonstrations to Robot Manipulation.
    Carfì A; Patten T; Kuang Y; Hammoud A; Alameh M; Maiettini E; Weinberg AI; Faria D; Mastrogiovanni F; Alenyà G; Natale L; Perdereau V; Vincze M; Billard A
    Front Robot AI; 2021; 8():714023. PubMed ID: 34660702
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Object Manipulation with an Anthropomorphic Robotic Hand via Deep Reinforcement Learning with a Synergy Space of Natural Hand Poses.
    Rivera P; Valarezo Añazco E; Kim TS
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450741
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Review of Learning-Based Robotic Manipulation in Cluttered Environments.
    Mohammed MQ; Kwek LC; Chua SC; Al-Dhaqm A; Nahavandi S; Eisa TAE; Miskon MF; Al-Mhiqani MN; Ali A; Abaker M; Alandoli EA
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298284
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Learning-based control approaches for service robots on cloth manipulation and dressing assistance: a comprehensive review.
    Nocentini O; Kim J; Bashir ZM; Cavallo F
    J Neuroeng Rehabil; 2022 Nov; 19(1):117. PubMed ID: 36329473
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Teaching NICO How to Grasp: An Empirical Study on Crossmodal Social Interaction as a Key Factor for Robots Learning From Humans.
    Kerzel M; Pekarek-Rosin T; Strahl E; Heinrich S; Wermter S
    Front Neurorobot; 2020; 14():28. PubMed ID: 32581759
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human-to-Robot Handover Based on Reinforcement Learning.
    Kim M; Yang S; Kim B; Kim J; Kim D
    Sensors (Basel); 2024 Sep; 24(19):. PubMed ID: 39409314
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vision-based grasp learning of an anthropomorphic hand-arm system in a synergy-based control framework.
    Ficuciello F; Migliozzi A; Laudante G; Falco P; Siciliano B
    Sci Robot; 2019 Jan; 4(26):. PubMed ID: 33137760
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Beyond Soft Hands: Efficient Grasping With Non-Anthropomorphic Soft Grippers.
    Hao Y; Visell Y
    Front Robot AI; 2021; 8():632006. PubMed ID: 34307466
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D Visual Data-Driven Spatiotemporal Deformations for Non-Rigid Object Grasping Using Robot Hands.
    Mateo CM; Gil P; Torres F
    Sensors (Basel); 2016 May; 16(5):. PubMed ID: 27164102
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep learning-based control framework for dynamic contact processes in humanoid grasping.
    Cheng S; Jin Y; Wang H
    Front Neurorobot; 2024; 18():1349752. PubMed ID: 38481603
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Learning for a Robot: Deep Reinforcement Learning, Imitation Learning, Transfer Learning.
    Hua J; Zeng L; Li G; Ju Z
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33670109
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Grasp Strategy of a Robot Passer Influences Performance and Quality of the Robot-Human Object Handover.
    Ortenzi V; Cini F; Pardi T; Marturi N; Stolkin R; Corke P; Controzzi M
    Front Robot AI; 2020; 7():542406. PubMed ID: 33501313
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimating the Orientation of Objects from Tactile Sensing Data Using Machine Learning Methods and Visual Frames of Reference.
    Prado da Fonseca V; Alves de Oliveira TE; Petriu EM
    Sensors (Basel); 2019 May; 19(10):. PubMed ID: 31108951
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Leveraging Human Perception in Robot Grasping and Manipulation Through Crowdsourcing and Gamification.
    Gorjup G; Gerez L; Liarokapis M
    Front Robot AI; 2021; 8():652760. PubMed ID: 33996927
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Survey of Multifingered Robotic Manipulation: Biological Results, Structural Evolvements, and Learning Methods.
    Li Y; Wang P; Li R; Tao M; Liu Z; Qiao H
    Front Neurorobot; 2022; 16():843267. PubMed ID: 35574228
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interactive and incremental learning of spatial object relations from human demonstrations.
    Kartmann R; Asfour T
    Front Robot AI; 2023; 10():1151303. PubMed ID: 37275214
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human-robot skills transfer interfaces for a flexible surgical robot.
    Calinon S; Bruno D; Malekzadeh MS; Nanayakkara T; Caldwell DG
    Comput Methods Programs Biomed; 2014 Sep; 116(2):81-96. PubMed ID: 24491285
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DeepDynamicHand: A Deep Neural Architecture for Labeling Hand Manipulation Strategies in Video Sources Exploiting Temporal Information.
    Arapi V; Della Santina C; Bacciu D; Bianchi M; Bicchi A
    Front Neurorobot; 2018; 12():86. PubMed ID: 30618707
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Grasping Force Control of Multi-Fingered Robotic Hands through Tactile Sensing for Object Stabilization.
    Deng Z; Jonetzko Y; Zhang L; Zhang J
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32075193
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extended residual learning with one-shot imitation learning for robotic assembly in semi-structured environment.
    Wang C; Su C; Sun B; Chen G; Xie L
    Front Neurorobot; 2024; 18():1355170. PubMed ID: 38741932
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.