BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 34660920)

  • 21. [Effects of site condition on litterfall and related nutrient return in Pinus luchuensis plantations].
    Wang Q; Xu X; Eiji H
    Ying Yong Sheng Tai Xue Bao; 2004 Jul; 15(7):1121-5. PubMed ID: 15506081
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Looking beyond leaves: variation in nutrient leaching potential of seasonal litterfall among different species within an urban forest.
    Hill SK; Hale RL; Grinath JB; Folk BT; Nielson R; Reinhardt K
    Urban Ecosyst; 2022; 25(4):1097-1109. PubMed ID: 35233162
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Vulnerability of cocoa-based agroforestry systems to climate change in West Africa.
    Ariza-Salamanca AJ; Navarro-Cerrillo RM; Quero-Pérez JL; Gallardo-Armas B; Crozier J; Stirling C; de Sousa K; González-Moreno P
    Sci Rep; 2023 Jun; 13(1):10033. PubMed ID: 37340020
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Consequences of shade management on the taxonomic patterns and functional diversity of termites (Blattodea: Termitidae) in cocoa agroforestry systems.
    Felicitas AC; Hervé BDB; Ekesi S; Akutse KS; Djuideu CTCL; Meupia MJ; Babalola OO
    Ecol Evol; 2018 Dec; 8(23):11582-11595. PubMed ID: 30598758
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Conversion of tropical lowland forest reduces nutrient return through litterfall, and alters nutrient use efficiency and seasonality of net primary production.
    Kotowska MM; Leuschner C; Triadiati T; Hertel D
    Oecologia; 2016 Feb; 180(2):601-18. PubMed ID: 26546083
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cadmium uptake by cocoa trees in agroforestry and monoculture systems under conventional and organic management.
    Gramlich A; Tandy S; Andres C; Chincheros Paniagua J; Armengot L; Schneider M; Schulin R
    Sci Total Environ; 2017 Feb; 580():677-686. PubMed ID: 28040226
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Organic matter and nutrient dynamics of the forest and forest floor in the Hubbard Brook forest.
    Gosz JR; Likens GE; Bormann FH
    Oecologia; 1976 Dec; 22(4):305-320. PubMed ID: 28308894
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Shade tree diversity, cocoa pest damage, yield compensating inputs and farmers' net returns in West Africa.
    Bisseleua Daghela HB; Fotio D; Yede ; Missoup AD; Vidal S
    PLoS One; 2013; 8(3):e56115. PubMed ID: 23520451
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Spatial-temporal variation in litterfall in seasonally dry tropical forests in Northeastern Brazil.
    Araújo VFP; Barbosa MRV; Araújo JP; Vasconcellos A
    Braz J Biol; 2020; 80(2):273-284. PubMed ID: 31389481
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Biogeochemical cycles in natural forest and conifer plantations in the high mountains of Colombia].
    León JD; González MI; Gallardo JF
    Rev Biol Trop; 2011 Dec; 59(4):1883-94. PubMed ID: 22208100
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Towards sustainable agroforestry management: Harnessing the nutritional soil value through cocoa mix waste.
    Kaba JS; Yamoah FA; Acquaye A
    Waste Manag; 2021 Apr; 124():264-272. PubMed ID: 33639411
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Linking spatial patterns of leaf litterfall and soil nutrients in a tropical forest: a neighborhood approach.
    Uriarte M; Turner BL; Thompson J; Zimmerman JK
    Ecol Appl; 2015 Oct; 25(7):2022-34. PubMed ID: 26591466
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Effects of Fargesia denudata density on its litterfall production, nutrient return, and nutrient use efficiency].
    Qi ZM; Wang KY
    Ying Yong Sheng Tai Xue Bao; 2007 Sep; 18(9):2025-9. PubMed ID: 18062307
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Nutrient dynamics in forest plantations of Azadirachta indica (Meliaceae) established for restoration of degraded lands in Colombia].
    Flórez-Flórez CP; León-Peláez JD; Osorio-Vega NW; Restrepo-Llano MF
    Rev Biol Trop; 2013 Jun; 61(2):515-29. PubMed ID: 23885570
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The effects of rainfall and vegetation on litterfall production in the semiarid region of northeastern Brazil.
    Lopes MC; Araújo VF; Vasconcellos A
    Braz J Biol; 2015 Aug; 75(3):703-8. PubMed ID: 26421774
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Shifts in litterfall and dominant nitrogen sources after expansion of shrub thickets.
    Brantley ST; Young DR
    Oecologia; 2008 Mar; 155(2):337-45. PubMed ID: 18040723
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Experimental litterfall manipulation drives large and rapid changes in soil carbon cycling in a wet tropical forest.
    Leff JW; Wieder WR; Taylor PG; Townsend AR; Nemergut DR; Grandy AS; Cleveland CC
    Glob Chang Biol; 2012 Sep; 18(9):2969-79. PubMed ID: 24501071
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Litterfall amount and its dynamics in urban forest of Shenyang, Northeast China].
    Xu WD; Chen W; He XY; Xu S; Zhang Y; Wen H
    Ying Yong Sheng Tai Xue Bao; 2012 Nov; 23(11):2931-9. PubMed ID: 23431772
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Seasonal contrasts in the response of coffee ants to agroforestry shade-tree management.
    Teodoro AV; Sousa-Souto L; Klein AM; Tscharntke T
    Environ Entomol; 2010 Dec; 39(6):1744-50. PubMed ID: 22182538
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nutrient recycling systems of Biosphere 2. Litterfall, decomposition, and wastewater recycling: results from the 1991-1993 closure experiment.
    Nelson M
    Life Support Biosph Sci; 1997; 4(3-4):145-53. PubMed ID: 11542290
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.