These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
220 related articles for article (PubMed ID: 34661018)
1. Ignition Delay Time and Oxidation of a Kerosene Aviation Fuel and a Blended Jet50-Bio50 Fuel. Cho CH; Han HS; Sohn CH; Han JS ACS Omega; 2021 Oct; 6(40):26646-26658. PubMed ID: 34661018 [TBL] [Abstract][Full Text] [Related]
2. Development of a Chemical-Kinetic Mechanism of a Four-Component Surrogate Fuel for RP-3 Kerosene. Yu B; Jiang X; He D; Wang C; Wang Z; Cai Y; Yu J; Yu JJ ACS Omega; 2021 Sep; 6(36):23485-23494. PubMed ID: 34549146 [TBL] [Abstract][Full Text] [Related]
3. A Raman spectroscopy based chemometric approach to predict the derived cetane number of hydrocarbon jet fuels and their mixtures. Ambre D; Sheyyab M; Lynch P; Mayhew EK; Brezinsky K Talanta; 2024 May; 271():125635. PubMed ID: 38219321 [TBL] [Abstract][Full Text] [Related]
4. A comprehensive experimental and detailed chemical kinetic modelling study of 2,5-dimethylfuran pyrolysis and oxidation. Somers KP; Simmie JM; Gillespie F; Conroy C; Black G; Metcalfe WK; Battin-Leclerc F; Dirrenberger P; Herbinet O; Glaude PA; Dagaut P; Togbé C; Yasunaga K; Fernandes RX; Lee C; Tripathi R; Curran HJ Combust Flame; 2013 Nov; 160(11):2291-318. PubMed ID: 24273333 [TBL] [Abstract][Full Text] [Related]
5. Polycyclic aromatic hydrocarbon emissions from the combustion of alternative fuels in a gas turbine engine. Christie S; Raper D; Lee DS; Williams PI; Rye L; Blakey S; Wilson CW; Lobo P; Hagen D; Whitefield PD Environ Sci Technol; 2012 Jun; 46(11):6393-400. PubMed ID: 22534092 [TBL] [Abstract][Full Text] [Related]
6. Effect of Cyclohexane on the Combustion Characteristics of Multi-Component Gasoline Surrogate Fuels. Rao S; Zheng Z; Yang C Molecules; 2023 May; 28(11):. PubMed ID: 37298749 [TBL] [Abstract][Full Text] [Related]
7. Chemical kinetic study of the effect of a biofuel additive on jet-A1 combustion. Dagaut P; Gaïl S J Phys Chem A; 2007 May; 111(19):3992-4000. PubMed ID: 17253673 [TBL] [Abstract][Full Text] [Related]
8. Biological and health effects of exposure to kerosene-based jet fuels and performance additives. Ritchie G; Still K; Rossi J; Bekkedal M; Bobb A; Arfsten D J Toxicol Environ Health B Crit Rev; 2003; 6(4):357-451. PubMed ID: 12775519 [TBL] [Abstract][Full Text] [Related]
9. Formulation of 7-Component Surrogate Mixtures for Military Jet Fuel and Testing in Diesel Engine. Luning Prak DJ; Simms GR; Dickerson T; McDaniel A; Cowart JS ACS Omega; 2022 Jan; 7(2):2275-2285. PubMed ID: 35071916 [TBL] [Abstract][Full Text] [Related]
10. Elucidating the differences in oxidation of high-performance α- and β- diisobutylene biofuels via Synchrotron photoionization mass spectrometry. Terracciano AC; Neupane S; Popolan-Vaida DM; Blair RG; Hansen N; Vaghjiani GL; Vasu SS Sci Rep; 2020 Dec; 10(1):21776. PubMed ID: 33311537 [TBL] [Abstract][Full Text] [Related]
11. Refining and blending of aviation turbine fuels. White RD Drug Chem Toxicol; 1999 Feb; 22(1):143-53. PubMed ID: 10189575 [TBL] [Abstract][Full Text] [Related]
12. Study on Ignition Delay and Reaction Mechanism of RP-3/Air Combustion Adding C Yu B; Jiang X; Zhang C; Xu P; He D; Yu J; Cai Y ACS Omega; 2023 Jul; 8(27):24362-24370. PubMed ID: 37457478 [TBL] [Abstract][Full Text] [Related]
13. Single-Pulse Shock Tube Experimental and Kinetic Modeling Study on Pyrolysis of a Direct Coal Liquefaction-Derived Jet Fuel and Its Blends with the Traditional RP-3 Jet Fuel. Wang BY; Zeng P; He R; Li F; Yang ZY; Xia ZX; Liang J; Wang QD ACS Omega; 2021 Jul; 6(28):18442-18450. PubMed ID: 34308075 [TBL] [Abstract][Full Text] [Related]
14. Development and Validation of Small-Size Mechanism for RP-3 Aviation Fuel with High Precision. Xi S; Hou J; Yang S; Wang Z; Li SH; Wang F ACS Omega; 2023 Aug; 8(32):29150-29160. PubMed ID: 37599952 [TBL] [Abstract][Full Text] [Related]
15. Comprehensive two-dimensional gas chromatography for the analysis of synthetic and crude-derived jet fuels. van der Westhuizen R; Ajam M; De Coning P; Beens J; de Villiers A; Sandra P J Chromatogr A; 2011 Jul; 1218(28):4478-86. PubMed ID: 21652042 [TBL] [Abstract][Full Text] [Related]
17. Experimental Study on Flame Chemical Composition of Coal and Ammonia Gas-Solid Jet in Flat Flame Burner. Cui MS; Niu F; Ji RS; Duan L; Zhang X ACS Omega; 2024 Mar; 9(10):11769-11779. PubMed ID: 38496997 [TBL] [Abstract][Full Text] [Related]
18. An experimental and modeling study of the low- and high-temperature oxidation of cyclohexane. Serinyel Z; Herbinet O; Frottier O; Dirrenberger P; Warth V; Glaude PA; Battin-Leclerc F Combust Flame; 2013 Nov; 160(11):2319-2332. PubMed ID: 24124264 [TBL] [Abstract][Full Text] [Related]
19. Impact of Alternative Jet Fuels on Engine Exhaust Composition During the 2015 ECLIF Ground-Based Measurements Campaign. Schripp T; Anderson B; Crosbie EC; Moore RH; Herrmann F; Oßwald P; Wahl C; Kapernaum M; Köhler M; Le Clercq P; Rauch B; Eichler P; Mikoviny T; Wisthaler A Environ Sci Technol; 2018 Apr; 52(8):4969-4978. PubMed ID: 29601722 [TBL] [Abstract][Full Text] [Related]
20. Behavior of deteriogenic fungi in aviation fuels (fossil and biofuel) during simulated storage. Lobato MR; Cazarolli JC; Rios RDF; D' Alessandro EB; Lutterbach MTS; Filho NRA; Pasa VMD; Aranda D; Scorza PR; Bento FM Braz J Microbiol; 2023 Sep; 54(3):1603-1621. PubMed ID: 37584891 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]