BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

352 related articles for article (PubMed ID: 34661212)

  • 1. Magnetic nanoparticles and clusters for magnetic hyperthermia: optimizing their heat performance and developing combinatorial therapies to tackle cancer.
    Gavilán H; Avugadda SK; Fernández-Cabada T; Soni N; Cassani M; Mai BT; Chantrell R; Pellegrino T
    Chem Soc Rev; 2021 Oct; 50(20):11614-11667. PubMed ID: 34661212
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hyperthermia generated by magnetic nanoparticles for effective treatment of disseminated peritoneal cancer in an orthotopic nude-mouse model.
    Matsumi Y; Kagawa T; Yano S; Tazawa H; Shigeyasu K; Takeda S; Ohara T; Aono H; Hoffman RM; Fujiwara T; Kishimoto H
    Cell Cycle; 2021 Jun; 20(12):1122-1133. PubMed ID: 34110969
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid tumor inhibition via magnetic hyperthermia regulated by caspase 3 with time-dependent clearance of iron oxide nanoparticles.
    Chauhan A; Midha S; Kumar R; Meena R; Singh P; Jha SK; Kuanr BK
    Biomater Sci; 2021 Apr; 9(8):2972-2990. PubMed ID: 33635305
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent advances in functionalized ferrite nanoparticles: From fundamentals to magnetic hyperthermia cancer therapy.
    Zhang L; Li Q; Liu J; Deng Z; Zhang X; Alifu N; Zhang X; Yu Z; Liu Y; Lan Z; Wen T; Sun K
    Colloids Surf B Biointerfaces; 2024 Feb; 234():113754. PubMed ID: 38241891
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effective magnetic hyperthermia induced by mitochondria-targeted nanoparticles modified with triphenylphosphonium-containing phospholipid polymers.
    Kaneko M; Yamazaki H; Ono T; Horie M; Ito A
    Cancer Sci; 2023 Sep; 114(9):3750-3758. PubMed ID: 37409483
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Magnetic Hyperthermia Therapy for High-Grade Glioma: A State-of-the-Art Review.
    Rodriguez B; Rivera D; Zhang JY; Brown C; Young T; Williams T; Huq S; Mattioli M; Bouras A; Hadjpanayis CG
    Pharmaceuticals (Basel); 2024 Feb; 17(3):. PubMed ID: 38543086
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Immuno-hyperthermia effected by antibody-conjugated nanoparticles selectively targets and eradicates individual cancer cells.
    Kagawa T; Matsumi Y; Aono H; Ohara T; Tazawa H; Shigeyasu K; Yano S; Takeda S; Komatsu Y; Hoffman RM; Fujiwara T; Kishimoto H
    Cell Cycle; 2021 Jul; 20(13):1221-1230. PubMed ID: 34148497
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancement of CD8
    Zhang Y; Gao X; Yan B; Wen N; Lee WSV; Liang XJ; Liu X
    ChemMedChem; 2022 Jan; 17(2):e202100656. PubMed ID: 34806311
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving the Efficacy of Magnetic Nanoparticle-Mediated Hyperthermia Using Trapezoidal Pulsed Electromagnetic Fields as an In Vitro Anticancer Treatment in Melanoma and Glioblastoma Multiforme Cell Lines.
    Souiade L; Domingo-Diez J; Alcaide C; Gámez B; Gámez L; Ramos M; Serrano Olmedo JJ
    Int J Mol Sci; 2023 Nov; 24(21):. PubMed ID: 37958913
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnetic nanoparticle-based hyperthermia: A prospect in cancer stem cell tracking and therapy.
    Montazersaheb P; Pishgahzadeh E; Jahani VB; Farahzadi R; Montazersaheb S
    Life Sci; 2023 Jun; 323():121714. PubMed ID: 37088411
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comprehensive understanding of magnetic hyperthermia for improving antitumor therapeutic efficacy.
    Liu X; Zhang Y; Wang Y; Zhu W; Li G; Ma X; Zhang Y; Chen S; Tiwari S; Shi K; Zhang S; Fan HM; Zhao YX; Liang XJ
    Theranostics; 2020; 10(8):3793-3815. PubMed ID: 32206123
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnetic hyperthermia enhances cell toxicity with respect to exogenous heating.
    Sanz B; Calatayud MP; Torres TE; Fanarraga ML; Ibarra MR; Goya GF
    Biomaterials; 2017 Jan; 114():62-70. PubMed ID: 27846403
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How size, shape and assembly of magnetic nanoparticles give rise to different hyperthermia scenarios.
    Gavilán H; Simeonidis K; Myrovali E; Mazarío E; Chubykalo-Fesenko O; Chantrell R; Balcells L; Angelakeris M; Morales MP; Serantes D
    Nanoscale; 2021 Oct; 13(37):15631-15646. PubMed ID: 34596185
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of hyperthermia induced by superparamagnetic iron oxide nanoparticles in glioma treatment.
    Silva AC; Oliveira TR; Mamani JB; Malheiros SM; Malavolta L; Pavon LF; Sibov TT; Amaro E; Tannús A; Vidoto EL; Martins MJ; Santos RS; Gamarra LF
    Int J Nanomedicine; 2011; 6():591-603. PubMed ID: 21674016
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controlled intracellular aggregation of magnetic particles improves permeation and retention for magnetic hyperthermia promotion and immune activation.
    Hu A; Pu Y; Xu N; Cai Z; Sun R; Fu S; Jin R; Guo Y; Ai H; Nie Y; Shuai X
    Theranostics; 2023; 13(4):1454-1469. PubMed ID: 36923543
    [No Abstract]   [Full Text] [Related]  

  • 16. Effects of multiple injections on the efficacy and cytotoxicity of folate-targeted magnetite nanoparticles as theranostic agents for MRI detection and magnetic hyperthermia therapy of tumor cells.
    Soleymani M; Khalighfard S; Khodayari S; Khodayari H; Kalhori MR; Hadjighassem MR; Shaterabadi Z; Alizadeh AM
    Sci Rep; 2020 Feb; 10(1):1695. PubMed ID: 32015364
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hierarchically decorated magnetic nanoparticles amplify the oxidative stress and promote the chemodynamic/magnetic hyperthermia/immune therapy.
    Hu A; Pu Y; Xu N; Yang H; Hu X; Sun R; Jin R; Nie Y
    Acta Biomater; 2024 Jan; 173():457-469. PubMed ID: 37984631
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Infrared-Emitting Multimodal Nanostructures for Controlled In Vivo Magnetic Hyperthermia.
    Ximendes E; Marin R; Shen Y; Ruiz D; Gómez-Cerezo D; Rodríguez-Sevilla P; Lifante J; Viveros-Méndez PX; Gámez F; García-Soriano D; Salas G; Zalbidea C; Espinosa A; Benayas A; García-Carrillo N; Cussó L; Desco M; Teran FJ; Juárez BH; Jaque D
    Adv Mater; 2021 Jul; 33(30):e2100077. PubMed ID: 34117667
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent insights in magnetic hyperthermia: From the "hot-spot" effect for local delivery to combined magneto-photo-thermia using magneto-plasmonic hybrids.
    Cazares-Cortes E; Cabana S; Boitard C; Nehlig E; Griffete N; Fresnais J; Wilhelm C; Abou-Hassan A; Ménager C
    Adv Drug Deliv Rev; 2019 Jan; 138():233-246. PubMed ID: 30414493
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective Magnetic Nanoheating: Combining Iron Oxide Nanoparticles for Multi-Hot-Spot Induction and Sequential Regulation.
    Ovejero JG; Armenia I; Serantes D; Veintemillas-Verdaguer S; Zeballos N; López-Gallego F; Grüttner C; de la Fuente JM; Puerto Morales MD; Grazu V
    Nano Lett; 2021 Sep; 21(17):7213-7220. PubMed ID: 34410726
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.