BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 34661227)

  • 1. Bio-memristors based on silk fibroin.
    Zhang Y; Fan S; Zhang Y
    Mater Horiz; 2021 Nov; 8(12):3281-3294. PubMed ID: 34661227
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Boost of the Bio-memristor Performance for Artificial Electronic Synapses by Surface Reconstruction.
    Wang J; Shi C; Sushko ML; Lan J; Sun K; Zhao J; Liu X; Yan X
    ACS Appl Mater Interfaces; 2021 Aug; 13(33):39641-39651. PubMed ID: 34374517
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Silk Fibroin for Flexible Electronic Devices.
    Zhu B; Wang H; Leow WR; Cai Y; Loh XJ; Han MY; Chen X
    Adv Mater; 2016 Jun; 28(22):4250-65. PubMed ID: 26684370
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low-Power and Tunable-Performance Biomemristor Based on Silk Fibroin.
    Zhang Y; Han F; Fan S; Zhang Y
    ACS Biomater Sci Eng; 2021 Jul; 7(7):3459-3468. PubMed ID: 34165975
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mesoscopic-Functionalization of Silk Fibroin with Gold Nanoclusters Mediated by Keratin and Bioinspired Silk Synapse.
    Xing Y; Shi C; Zhao J; Qiu W; Lin N; Wang J; Yan XB; Yu WD; Liu XY
    Small; 2017 Oct; 13(40):. PubMed ID: 28863240
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Degradable Elastomeric Silk Biomaterial for Flexible Bioelectronics.
    Brooks AK; Pradhan S; Yadavalli VK
    ACS Appl Bio Mater; 2023 Oct; 6(10):4392-4402. PubMed ID: 37788457
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Processing, mechanical properties and bio-applications of silk fibroin-based high-strength hydrogels.
    Zhao Y; Zhu ZS; Guan J; Wu SJ
    Acta Biomater; 2021 Apr; 125():57-71. PubMed ID: 33601067
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Silk fibroin as a natural polymeric based bio-material for tissue engineering and drug delivery systems-A review.
    Wani SUD; Gautam SP; Qadrie ZL; Gangadharappa HV
    Int J Biol Macromol; 2020 Nov; 163():2145-2161. PubMed ID: 32950527
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advancing the frontiers of silk fibroin protein-based materials for futuristic electronics and clinical wound-healing (Invited review).
    Koh LD; Yeo J; Lee YY; Ong Q; Han M; Tee BC
    Mater Sci Eng C Mater Biol Appl; 2018 May; 86():151-172. PubMed ID: 29525090
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New Silk Road: From Mesoscopic Reconstruction/Functionalization to Flexible Meso-Electronics/Photonics Based on Cocoon Silk Materials.
    Shi C; Hu F; Wu R; Xu Z; Shao G; Yu R; Liu XY
    Adv Mater; 2021 Dec; 33(50):e2005910. PubMed ID: 33852764
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing.
    Choi S; Yang J; Wang G
    Adv Mater; 2020 Dec; 32(51):e2004659. PubMed ID: 33006204
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Environmental-friendly, flexible silk fibroin-based film as dual-responsive shape memory material.
    Tang J; Wen Z; Zhai M; Zhang J; Zhang S; Cui Y; Guo Q; Zhu K; Wang J; Liu Q
    Int J Biol Macromol; 2024 Jun; 269(Pt 1):131748. PubMed ID: 38670194
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Silk Fibroin Based Drug Delivery Applications: Promises and Challenges.
    Wani SUD; Veerabhadrappa GH
    Curr Drug Targets; 2018; 19(10):1177-1190. PubMed ID: 29283071
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Silk Fibroin as a Functional Biomaterial for Tissue Engineering.
    Sun W; Gregory DA; Tomeh MA; Zhao X
    Int J Mol Sci; 2021 Feb; 22(3):. PubMed ID: 33540895
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dissolution and processing of silk fibroin for materials science.
    Wang HY; Zhang YQ; Wei ZG
    Crit Rev Biotechnol; 2021 May; 41(3):406-424. PubMed ID: 33749463
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The assembly of silk fibroin and graphene-based nanomaterials with enhanced mechanical/conductive properties and their biomedical applications.
    Li K; Li P; Fan Y
    J Mater Chem B; 2019 Nov; 7(44):6890-6913. PubMed ID: 31660574
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Organic iontronic memristors for artificial synapses and bionic neuromorphic computing.
    Xia Y; Zhang C; Xu Z; Lu S; Cheng X; Wei S; Yuan J; Sun Y; Li Y
    Nanoscale; 2024 Jan; 16(4):1471-1489. PubMed ID: 38180037
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crosslinking strategies for silk fibroin hydrogels: promising biomedical materials.
    Farokhi M; Aleemardani M; Solouk A; Mirzadeh H; Teuschl AH; Redl H
    Biomed Mater; 2021 Feb; 16(2):022004. PubMed ID: 33594992
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wafer-Scale Multilayer Fabrication for Silk Fibroin-Based Microelectronics.
    Kook G; Jeong S; Kim SH; Kim MK; Lee S; Cho IJ; Choi N; Lee HJ
    ACS Appl Mater Interfaces; 2019 Jan; 11(1):115-124. PubMed ID: 30480426
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controllable performance of a dopamine-modified silk fibroin-based bio-adhesive by doping metal ions.
    Yin Z; Liu H; Lin M; Xie W; Yang X; Cai Y
    Biomed Mater; 2021 May; 16(4):. PubMed ID: 33979788
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.