These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. An efficient and chemoselective synthesis of N-substituted 2-aminopyridines via a microwave-assisted multicomponent reaction. Tu S; Jiang B; Zhang Y; Jia R; Zhang J; Yao C; Shi F Org Biomol Chem; 2007 Jan; 5(2):355-9. PubMed ID: 17205181 [TBL] [Abstract][Full Text] [Related]
8. Advances in microwave-assisted combinatorial chemistry without polymer-supported reagents. Martínez-Palou R Mol Divers; 2006 Aug; 10(3):435-62. PubMed ID: 16896542 [TBL] [Abstract][Full Text] [Related]
10. Microwave Induced Green Synthesis: Sustainable Technology for Efficient Development of Bioactive Pyrimidine Scaffolds. Sahoo BM; Banik BK; Kumar BVVR; Panda KC; Tiwari A; Tiwari V; Singh S; Kumar M Curr Med Chem; 2023; 30(9):1029-1059. PubMed ID: 35733315 [TBL] [Abstract][Full Text] [Related]
11. Microwave-induced Bismuth Salts-mediated Synthesis of Molecules of Medicinal Interests. Bandyopadhyay D; Chavez A; Banik BK Curr Med Chem; 2017; 24(41):4677-4713. PubMed ID: 28322155 [TBL] [Abstract][Full Text] [Related]
12. Microwave assisted efficient synthesis of diphenyl substituted pyrazoles using PEG-600 as solvent - A green approach. Ganapathi M; Jayaseelan D; Guhanathan S Ecotoxicol Environ Saf; 2015 Nov; 121():87-92. PubMed ID: 25979455 [TBL] [Abstract][Full Text] [Related]
13. Microwave Flow Chemistry as a Methodology in Organic Syntheses, Enzymatic Reactions, and Nanoparticle Syntheses. Horikoshi S; Serpone N Chem Rec; 2019 Jan; 19(1):118-139. PubMed ID: 30277645 [TBL] [Abstract][Full Text] [Related]
14. Advances in microwave-assisted synthesis and the impact of novel drug discovery. Berrino E; Supuran CT Expert Opin Drug Discov; 2018 Sep; 13(9):861-873. PubMed ID: 30010444 [TBL] [Abstract][Full Text] [Related]
15. Microwave-assisted reactions in heterocyclic compounds with applications in medicinal and supramolecular chemistry. de la Hoz A; Díaz-Ortiz A; Moreno A; Sanchéz-Migallón A; Prieto P; Carrillo JR; Vázquez E; Gómez MV; Herrero MA Comb Chem High Throughput Screen; 2007 Dec; 10(10):877-902. PubMed ID: 18288949 [TBL] [Abstract][Full Text] [Related]
16. Multicomponent Synthesis of Potentially Biologically Active Heterocycles Containing a Phosphonate or a Phosphine Oxide Moiety. Popovics-Tóth N; Bálint E Acta Chim Slov; 2022 Dec; 69(4):735-755. PubMed ID: 36562156 [TBL] [Abstract][Full Text] [Related]
17. Green Synthetic Approach: An Efficient Eco-Friendly Tool for Synthesis of Biologically Active Oxadiazole Derivatives. Banik BK; Sahoo BM; Kumar BVVR; Panda KC; Jena J; Mahapatra MK; Borah P Molecules; 2021 Feb; 26(4):. PubMed ID: 33671751 [TBL] [Abstract][Full Text] [Related]
18. Batch and continuous flow preparation of Hantzsch 1,4-dihydropyridines under microwave heating and simultaneous real-time monitoring by Raman spectroscopy. An exploratory study. Christiaens S; Vantyghem X; Radoiu M; Vanden Eynde JJ Molecules; 2014 Jul; 19(7):9986-98. PubMed ID: 25010470 [TBL] [Abstract][Full Text] [Related]
19. Cascade synthesis with (triphenylphosphoranylidene)-ethenone as a versatile reagent for fast synthesis of heterocycles and unsaturated amides under microwave dielectric heating. Westmana J; Orrling K Comb Chem High Throughput Screen; 2002 Nov; 5(7):571-4. PubMed ID: 12470270 [TBL] [Abstract][Full Text] [Related]
20. Recent advances in the Willgerodt-Kindler reaction. Priebbenow DL; Bolm C Chem Soc Rev; 2013 Oct; 42(19):7870-80. PubMed ID: 23793793 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]