These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
261 related articles for article (PubMed ID: 34661838)
1. Fabrication of novel bio-adsorbent and its application for the removal of Cu(II) from aqueous solution. Zhao D; Ye W; Cui W Environ Sci Pollut Res Int; 2022 Apr; 29(20):29613-29623. PubMed ID: 34661838 [TBL] [Abstract][Full Text] [Related]
2. Magnetic layered double hydroxide composite as new adsorbent for efficient Cu (II) and Ni (II) ions removal from aqueous samples: Adsorption mechanism investigation and parameters optimization. Taheri S; Sedghi-Asl M; Ghaedi M; Mohammadi-Asl Z; Rahmanian M J Environ Manage; 2023 Mar; 329():117009. PubMed ID: 36535146 [TBL] [Abstract][Full Text] [Related]
3. Biosorption of copper, zinc, cadmium and chromium ions from aqueous solution by natural foxtail millet shell. Peng SH; Wang R; Yang LZ; He L; He X; Liu X Ecotoxicol Environ Saf; 2018 Dec; 165():61-69. PubMed ID: 30193165 [TBL] [Abstract][Full Text] [Related]
4. Alginate modified graphitic carbon nitride composite hydrogels for efficient removal of Pb(II), Ni(II) and Cu(II) from water. Shen W; An QD; Xiao ZY; Zhai SR; Hao JA; Tong Y Int J Biol Macromol; 2020 Apr; 148():1298-1306. PubMed ID: 31739024 [TBL] [Abstract][Full Text] [Related]
5. Removal of Cu(II) from aqueous solutions using chemically modified chitosan. Kannamba B; Reddy KL; AppaRao BV J Hazard Mater; 2010 Mar; 175(1-3):939-48. PubMed ID: 19942344 [TBL] [Abstract][Full Text] [Related]
6. Ni(II) and Cu(II) removal from aqueous solution by a heavy metal-resistance bacterium: kinetic, isotherm and mechanism studies. Zhang H; Hu X; Lu H Water Sci Technol; 2017 Aug; 76(3-4):859-868. PubMed ID: 28799932 [TBL] [Abstract][Full Text] [Related]
7. Functionalized layered double hydroxides composite bio-adsorbent for efficient copper(II) ion encapsulation from wastewater. Khandaker S; Hossain MT; Saha PK; Rayhan U; Islam A; Choudhury TR; Awual MR J Environ Manage; 2021 Dec; 300():113782. PubMed ID: 34560463 [TBL] [Abstract][Full Text] [Related]
8. Use of activated bentonite-alginate composite beads for efficient removal of toxic Cu Pawar RR; Lalhmunsiama ; Ingole PG; Lee SM Int J Biol Macromol; 2020 Dec; 164():3145-3154. PubMed ID: 32827615 [TBL] [Abstract][Full Text] [Related]
9. Thermodynamic valorisation of lignocellulosic biomass green sorbents for toxic pollutants removal. Šehović E; Memić M; Sulejmanović J; Hameed M; Begić S; Ljubijankić N; Selović A; Ghfar AA; Sher F Chemosphere; 2022 Nov; 307(Pt 1):135737. PubMed ID: 35850218 [TBL] [Abstract][Full Text] [Related]
10. Fabrication of sodium alginate-melamine@ZIF-67 composite hydrogel and its adsorption application for Pb(II) in wastewater. Zhang X; Li Z; Zhang T; Chen J; Ji W; Wei Y Environ Sci Pollut Res Int; 2023 Feb; 30(7):18364-18379. PubMed ID: 36215007 [TBL] [Abstract][Full Text] [Related]
11. Removal of copper(II) from aqueous solution using nanochitosan/sodium alginate/microcrystalline cellulose beads. Vijayalakshmi K; Gomathi T; Latha S; Hajeeth T; Sudha PN Int J Biol Macromol; 2016 Jan; 82():440-52. PubMed ID: 26434525 [TBL] [Abstract][Full Text] [Related]
12. Amino-functionalized adsorbent prepared by means of Cu(II) imprinted method and its selective removal of copper from aqueous solutions. Peng W; Xie Z; Cheng G; Shi L; Zhang Y J Hazard Mater; 2015 Aug; 294():9-16. PubMed ID: 25827392 [TBL] [Abstract][Full Text] [Related]
13. Preparation and characterization of surfactant-modified hydroxyapatite/zeolite composite and its adsorption behavior toward humic acid and copper(II). Zhan Y; Lin J; Li J Environ Sci Pollut Res Int; 2013 Apr; 20(4):2512-26. PubMed ID: 22961484 [TBL] [Abstract][Full Text] [Related]
14. Adsorption of As(III), As(V) and Cu(II) on zirconium oxide immobilized alginate beads in aqueous phase. Kwon OH; Kim JO; Cho DW; Kumar R; Baek SH; Kurade MB; Jeon BH Chemosphere; 2016 Oct; 160():126-33. PubMed ID: 27372261 [TBL] [Abstract][Full Text] [Related]
15. Synthesis of magnetic bentonite-gelatin hydrogel beads and their applications in Cu Shen Q; Wu T; Zhang GB; Ma HE; Wang W; Pan GX; Zhang YF Environ Sci Pollut Res Int; 2023 Dec; 30(60):125702-125717. PubMed ID: 38001295 [TBL] [Abstract][Full Text] [Related]
16. Fast removal of copper ions from aqueous solution using an eco-friendly fibrous adsorbent. Niu Y; Ying D; Li K; Wang Y; Jia J Chemosphere; 2016 Oct; 161():501-509. PubMed ID: 27470942 [TBL] [Abstract][Full Text] [Related]
17. Selective adsorption of tetracycline and copper(II) on ion-imprinted porous alginate microspheres: performance and potential mechanisms. Wu W; Gao X; Chen B; Meng G; Lian J; Xue F; Kong Q; Yang J Environ Sci Pollut Res Int; 2023 Oct; 30(48):105538-105555. PubMed ID: 37715034 [TBL] [Abstract][Full Text] [Related]
18. Magnetic silica coated iron carbide/alginate beads: Synthesis and application for adsorption of Cu (II) from aqueous solutions. Ahmadpoor F; Shojaosadati SA; Mousavi SZ Int J Biol Macromol; 2019 May; 128():941-947. PubMed ID: 30716367 [TBL] [Abstract][Full Text] [Related]
19. Synthesis of cross-linking chitosan-PVA composite hydrogel and adsorption of Cu(II) ions. Song Q; Gao J; Lin Y; Zhang Z; Xiang Y Water Sci Technol; 2020 Mar; 81(5):1063-1070. PubMed ID: 32541122 [TBL] [Abstract][Full Text] [Related]
20. Enhanced removal of bisphenol A from aqueous solution by aluminum-based MOF/sodium alginate-chitosan composite beads. Luo Z; Chen H; Wu S; Yang C; Cheng J Chemosphere; 2019 Dec; 237():124493. PubMed ID: 31398611 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]