BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 34662101)

  • 1. Development of a Transcription Factor-Based Diamine Biosensor in
    Zhao N; Song J; Zhang H; Lin Y; Han S; Huang Y; Zheng S
    ACS Synth Biol; 2021 Nov; 10(11):3074-3083. PubMed ID: 34662101
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Elimination of polyamine N-acetylation and regulatory engineering improved putrescine production by Corynebacterium glutamicum.
    Nguyen AQ; Schneider J; Wendisch VF
    J Biotechnol; 2015 May; 201():75-85. PubMed ID: 25449016
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New Intracellular Shikimic Acid Biosensor for Monitoring Shikimate Synthesis in Corynebacterium glutamicum.
    Liu C; Zhang B; Liu YM; Yang KQ; Liu SJ
    ACS Synth Biol; 2018 Feb; 7(2):591-601. PubMed ID: 29087704
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering biotin prototrophic Corynebacterium glutamicum strains for amino acid, diamine and carotenoid production.
    Peters-Wendisch P; Götker S; Heider SA; Komati Reddy G; Nguyen AQ; Stansen KC; Wendisch VF
    J Biotechnol; 2014 Dec; 192 Pt B():346-54. PubMed ID: 24486440
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biosensor-driven adaptive laboratory evolution of l-valine production in Corynebacterium glutamicum.
    Mahr R; Gätgens C; Gätgens J; Polen T; Kalinowski J; Frunzke J
    Metab Eng; 2015 Nov; 32():184-194. PubMed ID: 26453945
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a Transcriptional Factor PuuR-Based Putrescine-Specific Biosensor in
    Zhao N; Wang J; Jia A; Lin Y; Zheng S
    Bioengineering (Basel); 2023 Jan; 10(2):. PubMed ID: 36829651
    [No Abstract]   [Full Text] [Related]  

  • 7. A synthetic biology approach to study carotenoid production in Corynebacterium glutamicum: Read-out by a genetically encoded biosensor combined with perturbing native gene expression by CRISPRi.
    Henke NA; Göttl VL; Schmitt I; Peters-Wendisch P; Wendisch VF
    Methods Enzymol; 2022; 671():383-419. PubMed ID: 35878987
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolically engineered Corynebacterium glutamicum for bio-based production of chemicals, fuels, materials, and healthcare products.
    Becker J; Rohles CM; Wittmann C
    Metab Eng; 2018 Nov; 50():122-141. PubMed ID: 30031852
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic Control of 4-Hydroxyisoleucine Biosynthesis by Modified l-Isoleucine Biosensor in Recombinant
    Tan S; Shi F; Liu H; Yu X; Wei S; Fan Z; Li Y
    ACS Synth Biol; 2020 Sep; 9(9):2378-2389. PubMed ID: 32813974
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biotechnological production of mono- and diamines using bacteria: recent progress, applications, and perspectives.
    Wendisch VF; Mindt M; Pérez-García F
    Appl Microbiol Biotechnol; 2018 Apr; 102(8):3583-3594. PubMed ID: 29520601
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic engineering to improve 1,5-diaminopentane production from cellobiose using β-glucosidase-secreting Corynebacterium glutamicum.
    Matsuura R; Kishida M; Konishi R; Hirata Y; Adachi N; Segawa S; Imao K; Tanaka T; Kondo A
    Biotechnol Bioeng; 2019 Oct; 116(10):2640-2651. PubMed ID: 31184369
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integration of ARTP mutagenesis with biosensor-mediated high-throughput screening to improve L-serine yield in Corynebacterium glutamicum.
    Zhang X; Zhang X; Xu G; Zhang X; Shi J; Xu Z
    Appl Microbiol Biotechnol; 2018 Jul; 102(14):5939-5951. PubMed ID: 29725721
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering microbial cell factories: Metabolic engineering of Corynebacterium glutamicum with a focus on non-natural products.
    Heider SA; Wendisch VF
    Biotechnol J; 2015 Aug; 10(8):1170-84. PubMed ID: 26216246
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modular pathway engineering of Corynebacterium glutamicum for production of the glutamate-derived compounds ornithine, proline, putrescine, citrulline, and arginine.
    Jensen JV; Eberhardt D; Wendisch VF
    J Biotechnol; 2015 Nov; 214():85-94. PubMed ID: 26393954
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic engineering of Corynebacterium glutamicum for enhanced production of 5-aminovaleric acid.
    Shin JH; Park SH; Oh YH; Choi JW; Lee MH; Cho JS; Jeong KJ; Joo JC; Yu J; Park SJ; Lee SY
    Microb Cell Fact; 2016 Oct; 15(1):174. PubMed ID: 27717386
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolutionary engineering of Corynebacterium glutamicum.
    Stella RG; Wiechert J; Noack S; Frunzke J
    Biotechnol J; 2019 Sep; 14(9):e1800444. PubMed ID: 30927493
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic evolution and a comparative omics analysis of Corynebacterium glutamicum for putrescine production.
    Li Z; Shen YP; Jiang XL; Feng LS; Liu JZ
    J Ind Microbiol Biotechnol; 2018 Feb; 45(2):123-139. PubMed ID: 29344811
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diamine Biosynthesis: Research Progress and Application Prospects.
    Wang L; Li G; Deng Y
    Appl Environ Microbiol; 2020 Nov; 86(23):. PubMed ID: 32978133
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biosensor-based growth-coupling and spatial separation as an evolution strategy to improve small molecule production of Corynebacterium glutamicum.
    Stella RG; Gertzen CGW; Smits SHJ; Gätgens C; Polen T; Noack S; Frunzke J
    Metab Eng; 2021 Nov; 68():162-173. PubMed ID: 34628038
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic evolution of Corynebacterium glutamicum for increased production of L-ornithine.
    Jiang LY; Chen SG; Zhang YY; Liu JZ
    BMC Biotechnol; 2013 Jun; 13():47. PubMed ID: 23725060
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.