These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 34662126)
1. Interfacial Steric and Molecular Bonding Effects Contributing to the Stability of Neutrally Charged Nanoemulsions. Tran E; Richmond GL Langmuir; 2021 Nov; 37(43):12643-12653. PubMed ID: 34662126 [TBL] [Abstract][Full Text] [Related]
2. Formation and surface-stabilizing contributions to bare nanoemulsions created with negligible surface charge. Carpenter AP; Tran E; Altman RM; Richmond GL Proc Natl Acad Sci U S A; 2019 May; 116(19):9214-9219. PubMed ID: 31019075 [TBL] [Abstract][Full Text] [Related]
3. Formation and Physical Stability of Zeng L; Liu Y; Yuan Z; Wang Z Molecules; 2021 Dec; 26(24):. PubMed ID: 34946544 [TBL] [Abstract][Full Text] [Related]
4. Fabrication of β-conglycinin-stabilized nanoemulsions via ultrasound process and influence of SDS and PEG 10000 co-emulsifiers on the physicochemical properties of nanoemulsions. Jin H; Wang X; Chen Z; Li Y; Liu C; Xu J Food Res Int; 2018 Apr; 106():800-808. PubMed ID: 29579989 [TBL] [Abstract][Full Text] [Related]
5. Peeling back the layers: Investigating the effects of polyelectrolyte layering on surface structure and stability of oil-in-water nanoemulsions. Tran E; Mapile AN; Richmond GL J Colloid Interface Sci; 2021 Oct; 599():706-716. PubMed ID: 33984763 [TBL] [Abstract][Full Text] [Related]
6. Probing the Molecular Structure of Coadsorbed Polyethylenimine and Charged Surfactants at the Nanoemulsion Droplet Surface. Tran E; Carpenter AP; Richmond GL Langmuir; 2020 Aug; 36(31):9081-9089. PubMed ID: 32668900 [TBL] [Abstract][Full Text] [Related]
7. Impact of Surfactants on Nanoemulsions based on Fractionated Coconut Oil: Emulsification Stability and in vitro Digestion. Gao W; Jiang Z; Du X; Zhang F; Liu Y; Bai X; Sun G J Oleo Sci; 2020 Mar; 69(3):227-239. PubMed ID: 32051356 [TBL] [Abstract][Full Text] [Related]
8. Dynamic Duo: Vibrational Sum Frequency Scattering Investigation of pH-Switchable Carboxylic Acid/Carboxylate Surfactants on Nanodroplet Surfaces. Foster MJ; Carpenter AP; Richmond GL J Phys Chem B; 2021 Aug; 125(33):9629-9640. PubMed ID: 34402616 [TBL] [Abstract][Full Text] [Related]
9. Formation of vitamin D nanoemulsion-based delivery systems by spontaneous emulsification: factors affecting particle size and stability. Guttoff M; Saberi AH; McClements DJ Food Chem; 2015 Mar; 171():117-22. PubMed ID: 25308650 [TBL] [Abstract][Full Text] [Related]
10. Physical Stability, Autoxidation, and Photosensitized Oxidation of ω-3 Oils in Nanoemulsions Prepared with Natural and Synthetic Surfactants. Uluata S; McClements DJ; Decker EA J Agric Food Chem; 2015 Oct; 63(42):9333-40. PubMed ID: 26452408 [TBL] [Abstract][Full Text] [Related]
11. Interaction Mechanism of Oil-in-Water Emulsions with Asphaltenes Determined Using Droplet Probe AFM. Shi C; Zhang L; Xie L; Lu X; Liu Q; Mantilla CA; van den Berg FG; Zeng H Langmuir; 2016 Mar; 32(10):2302-10. PubMed ID: 26901396 [TBL] [Abstract][Full Text] [Related]
12. Molecular interactions of a polyaromatic surfactant C5Pe in aqueous solutions studied by a surface forces apparatus. Wang J; Lu Q; Harbottle D; Sjöblom J; Xu Z; Zeng H J Phys Chem B; 2012 Sep; 116(36):11187-96. PubMed ID: 22913670 [TBL] [Abstract][Full Text] [Related]
13. Stabilization of phase inversion temperature nanoemulsions by surfactant displacement. Rao J; McClements DJ J Agric Food Chem; 2010 Jun; 58(11):7059-66. PubMed ID: 20476765 [TBL] [Abstract][Full Text] [Related]
14. Formation and stabilization of nanoemulsions using biosurfactants: Rhamnolipids. Bai L; McClements DJ J Colloid Interface Sci; 2016 Oct; 479():71-79. PubMed ID: 27372634 [TBL] [Abstract][Full Text] [Related]
15. Influence of environmental stresses on stability of O/W emulsions containing cationic droplets stabilized by SDS-fish gelatin membranes. Surh J; Gu YS; Decker EA; McClements DJ J Agric Food Chem; 2005 May; 53(10):4236-44. PubMed ID: 15884866 [TBL] [Abstract][Full Text] [Related]
16. Influence of surfactant charge on antimicrobial efficacy of surfactant-stabilized thyme oil nanoemulsions. Ziani K; Chang Y; McLandsborough L; McClements DJ J Agric Food Chem; 2011 Jun; 59(11):6247-55. PubMed ID: 21520914 [TBL] [Abstract][Full Text] [Related]
17. Formation of stable nanoemulsions by ultrasound-assisted two-step emulsification process for topical drug delivery: Effect of oil phase composition and surfactant concentration and loratadine as ripening inhibitor. Sarheed O; Shouqair D; Ramesh KVRNS; Khaleel T; Amin M; Boateng J; Drechsler M Int J Pharm; 2020 Feb; 576():118952. PubMed ID: 31843549 [TBL] [Abstract][Full Text] [Related]
18. Comparison of natural and synthetic surfactants at forming and stabilizing nanoemulsions: Tea saponin, Quillaja saponin, and Tween 80. Zhu Z; Wen Y; Yi J; Cao Y; Liu F; McClements DJ J Colloid Interface Sci; 2019 Feb; 536():80-87. PubMed ID: 30359887 [TBL] [Abstract][Full Text] [Related]
19. Natural oil nanoemulsions as cores for layer-by-layer encapsulation. Adamczak M; Para G; Simon C; Warszyński P J Microencapsul; 2013; 30(5):479-89. PubMed ID: 23489013 [TBL] [Abstract][Full Text] [Related]
20. Encapsulation of ω-3 fatty acids in nanoemulsion-based delivery systems fabricated from natural emulsifiers: Sunflower phospholipids. Komaiko J; Sastrosubroto A; McClements DJ Food Chem; 2016 Jul; 203():331-339. PubMed ID: 26948622 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]