These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 34662137)

  • 1. Hierarchical Colorful Structures by Three-Dimensional Printing of Inverse Opals.
    Raut HK; Wang H; Ruan Q; Wang H; Fernandez JG; Yang JKW
    Nano Lett; 2021 Oct; 21(20):8602-8608. PubMed ID: 34662137
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Noniridescent Biomimetic Photonic Microdomes by Inkjet Printing.
    Shanker R; Sardar S; Chen S; Gamage S; Rossi S; Jonsson MP
    Nano Lett; 2020 Oct; 20(10):7243-7250. PubMed ID: 32936657
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inkjet Printing of Patterned, Multispectral, and Biocompatible Photonic Crystals.
    Li W; Wang Y; Li M; Garbarini LP; Omenetto FG
    Adv Mater; 2019 Sep; 31(36):e1901036. PubMed ID: 31309624
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combining Bottom-Up Self-Assembly with Top-Down Microfabrication to Create Hierarchical Inverse Opals with High Structural Order.
    Schaffner M; England G; Kolle M; Aizenberg J; Vogel N
    Small; 2015 Sep; 11(34):4334-40. PubMed ID: 26042571
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Creating bio-inspired hierarchical 3D-2D photonic stacks via planar lithography on self-assembled inverse opals.
    Burgess IB; Aizenberg J; Lončar M
    Bioinspir Biomim; 2013 Dec; 8(4):045004. PubMed ID: 24263010
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulation of Multiscale 3D Lattices through Conformational Control: Painting Silk Inverse Opals with Water and Light.
    Wang Y; Aurelio D; Li W; Tseng P; Zheng Z; Li M; Kaplan DL; Liscidini M; Omenetto FG
    Adv Mater; 2017 Oct; 29(38):. PubMed ID: 28833734
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 4D Direct Laser Writing of Submerged Structural Colors at the Microscale.
    Liu B; Dong B; Xin C; Chen C; Zhang L; Wang D; Hu Y; Li J; Zhang L; Wu D; Chu J
    Small; 2023 Jan; 19(2):e2204630. PubMed ID: 36382576
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Finely tunable dynamical coloration using bicontinuous micrometer-domains.
    Xi Y; Zhang F; Ma Y; Prabhu VM; Liu Y
    Nat Commun; 2022 Jun; 13(1):3619. PubMed ID: 35750660
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Designing Structural-Color Patterns Composed of Colloidal Arrays.
    Kim JB; Lee SY; Lee JM; Kim SH
    ACS Appl Mater Interfaces; 2019 Apr; 11(16):14485-14509. PubMed ID: 30943000
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tuning of Structural Colors Like a Chameleon Enabled by Shape-Memory Polymers.
    Schauer S; Baumberg JJ; Hölscher H; Smoukov SK
    Macromol Rapid Commun; 2018 Nov; 39(21):e1800518. PubMed ID: 30207618
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomaterial-Based "Structured Opals" with Programmable Combination of Diffractive Optical Elements and Photonic Bandgap Effects.
    Wang Y; Li W; Li M; Zhao S; De Ferrari F; Liscidini M; Omenetto FG
    Adv Mater; 2019 Feb; 31(5):e1805312. PubMed ID: 30520166
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural color three-dimensional printing by shrinking photonic crystals.
    Liu Y; Wang H; Ho J; Ng RC; Ng RJH; Hall-Chen VH; Koay EHH; Dong Z; Liu H; Qiu CW; Greer JR; Yang JKW
    Nat Commun; 2019 Sep; 10(1):4340. PubMed ID: 31554803
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generation of Complex Tunable Multispectral Signatures with Reconfigurable Protein-Based, Plasmonic-Photonic Crystal Hybrid Nanostructures.
    Wang Y; Kim BJ; Guidetti G; Omenetto FG
    Small; 2022 Jun; 18(22):e2201036. PubMed ID: 35527342
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-Dimensional Printing of Structural Color Using a Femtoliter Meniscus.
    Bae J; Yoo C; Kim S; Ahn J; Sim HH; Kim JH; Kim JH; Yoon SY; Kim JT; Seol SK; Pyo J
    ACS Nano; 2023 Jul; 17(14):13584-13593. PubMed ID: 37294876
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioinspired Photonic Pigments from Colloidal Self-Assembly.
    Goerlitzer ESA; Klupp Taylor RN; Vogel N
    Adv Mater; 2018 Jul; 30(28):e1706654. PubMed ID: 29733481
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Trapping Structural Coloration by a Bioinspired Gyroid Microstructure in Solid State.
    Lin EL; Hsu WL; Chiang YW
    ACS Nano; 2018 Jan; 12(1):485-493. PubMed ID: 29240399
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnetic assembly route to colloidal responsive photonic nanostructures.
    He L; Wang M; Ge J; Yin Y
    Acc Chem Res; 2012 Sep; 45(9):1431-40. PubMed ID: 22578015
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photonic crystal based biosensors: Emerging inverse opals for biomarker detection.
    Fathi F; Rashidi MR; Pakchin PS; Ahmadi-Kandjani S; Nikniazi A
    Talanta; 2021 Jan; 221():121615. PubMed ID: 33076145
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controlled Insertion of Planar Defect in Inverse Opals for Anticounterfeiting Applications.
    Heo Y; Lee SY; Kim JW; Jeon TY; Kim SH
    ACS Appl Mater Interfaces; 2017 Dec; 9(49):43098-43104. PubMed ID: 29165980
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Replicating the Cynandra opis Butterfly's Structural Color for Bioinspired Bigrating Color Filters.
    Cao X; Du Y; Guo Y; Hu G; Zhang M; Wang L; Zhou J; Gao Q; Fischer P; Wang J; Stavrakis S; deMello A
    Adv Mater; 2022 Mar; 34(9):e2109161. PubMed ID: 34981865
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.