These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 34662142)
1. 3D-Scaffold: A Deep Learning Framework to Generate 3D Coordinates of Drug-like Molecules with Desired Scaffolds. Joshi RP; Gebauer NWA; Bontha M; Khazaieli M; James RM; Brown JB; Kumar N J Phys Chem B; 2021 Nov; 125(44):12166-12176. PubMed ID: 34662142 [TBL] [Abstract][Full Text] [Related]
2. Integrated data-driven and experimental approaches to accelerate lead optimization targeting SARS-CoV-2 main protease. Varikoti RA; Schultz KJ; Kombala CJ; Kruel A; Brandvold KR; Zhou M; Kumar N J Comput Aided Mol Des; 2023 Aug; 37(8):339-355. PubMed ID: 37314632 [TBL] [Abstract][Full Text] [Related]
3. Predicting novel drug candidates against Covid-19 using generative deep neural networks. Amilpur S; Bhukya R J Mol Graph Model; 2022 Jan; 110():108045. PubMed ID: 34688160 [TBL] [Abstract][Full Text] [Related]
4. Predictive modeling by deep learning, virtual screening and molecular dynamics study of natural compounds against SARS-CoV-2 main protease. Joshi T; Joshi T; Pundir H; Sharma P; Mathpal S; Chandra S J Biomol Struct Dyn; 2021 Oct; 39(17):6728-6746. PubMed ID: 32752947 [TBL] [Abstract][Full Text] [Related]
5. De novo generation of dual-target ligands for the treatment of SARS-CoV-2 using deep learning, virtual screening, and molecular dynamic simulations. Humayun F; Khan F; Khan A; Alshammari A; Ji J; Farhan A; Fawad N; Alam W; Ali A; Wei DQ J Biomol Struct Dyn; 2024 Apr; 42(6):3019-3029. PubMed ID: 37449757 [TBL] [Abstract][Full Text] [Related]
6. DeepScaffold: A Comprehensive Tool for Scaffold-Based De Novo Drug Discovery Using Deep Learning. Li Y; Hu J; Wang Y; Zhou J; Zhang L; Liu Z J Chem Inf Model; 2020 Jan; 60(1):77-91. PubMed ID: 31809029 [TBL] [Abstract][Full Text] [Related]
7. Strategies for Design of Molecular Structures with a Desired Pharmacophore Using Deep Reinforcement Learning. Yoshimori A; Kawasaki E; Kanai C; Tasaka T Chem Pharm Bull (Tokyo); 2020; 68(3):227-233. PubMed ID: 32115529 [TBL] [Abstract][Full Text] [Related]
9. ReGen-DTI: A novel generative drug target interaction model for predicting potential drug candidates against SARS-COV2. Sivangi KB; Amilpur S; Dasari CM Comput Biol Chem; 2023 Oct; 106():107927. PubMed ID: 37499436 [TBL] [Abstract][Full Text] [Related]
10. Identification of potential inhibitors against SARS-CoV-2 by targeting proteins responsible for envelope formation and virion assembly using docking based virtual screening, and pharmacokinetics approaches. Bhowmik D; Nandi R; Jagadeesan R; Kumar N; Prakash A; Kumar D Infect Genet Evol; 2020 Oct; 84():104451. PubMed ID: 32640381 [TBL] [Abstract][Full Text] [Related]
11. [Development of antiviral drugs based on inhibitors of the SARS-COV-2 main protease]. Sulimov AV; Shikhaliev KS; Pyankov OV; Shcherbakov DN; Chirkova VY; Ilin IS; Kutov DC; Tashchilova AS; Krysin MY; Krylskiy DV; Stolpovskaya NV; Volosnikova EA; Belenkaya SV; Sulimov VB Biomed Khim; 2021 May; 67(3):259-267. PubMed ID: 34142533 [TBL] [Abstract][Full Text] [Related]
12. 3D-SMGE: a pipeline for scaffold-based molecular generation and evaluation. Xu C; Liu R; Huang S; Li W; Li Z; Luo HB Brief Bioinform; 2023 Sep; 24(6):. PubMed ID: 37756591 [TBL] [Abstract][Full Text] [Related]
13. FSM-DDTR: End-to-end feedback strategy for multi-objective De Novo drug design using transformers. Monteiro NRC; Pereira TO; Machado ACD; Oliveira JL; Abbasi M; Arrais JP Comput Biol Med; 2023 Sep; 164():107285. PubMed ID: 37557054 [TBL] [Abstract][Full Text] [Related]
14. Identification of potential inhibitors of SARS-COV-2 endoribonuclease (EndoU) from FDA approved drugs: a drug repurposing approach to find therapeutics for COVID-19. Chandra A; Gurjar V; Qamar I; Singh N J Biomol Struct Dyn; 2021 Aug; 39(12):4201-4211. PubMed ID: 32462970 [TBL] [Abstract][Full Text] [Related]
15. Chemical-informatics approach to COVID-19 drug discovery: Monte Carlo based QSAR, virtual screening and molecular docking study of some Amin SA; Ghosh K; Gayen S; Jha T J Biomol Struct Dyn; 2021 Aug; 39(13):4764-4773. PubMed ID: 32568618 [TBL] [Abstract][Full Text] [Related]
16. Anthocyanin derivatives as potent inhibitors of SARS-CoV-2 main protease: An in-silico perspective of therapeutic targets against COVID-19 pandemic. Fakhar Z; Faramarzi B; Pacifico S; Faramarzi S J Biomol Struct Dyn; 2021 Oct; 39(16):6171-6183. PubMed ID: 32741312 [TBL] [Abstract][Full Text] [Related]
17. In Silico Evaluation of the Effectivity of Approved Protease Inhibitors against the Main Protease of the Novel SARS-CoV-2 Virus. Eleftheriou P; Amanatidou D; Petrou A; Geronikaki A Molecules; 2020 May; 25(11):. PubMed ID: 32485894 [TBL] [Abstract][Full Text] [Related]
18. Structure-based Li Y; Pei J; Lai L Chem Sci; 2021 Oct; 12(41):13664-13675. PubMed ID: 34760151 [TBL] [Abstract][Full Text] [Related]
19. Repurposing drugs against the main protease of SARS-CoV-2: mechanism-based insights supported by available laboratory and clinical data. Chakraborti S; Bheemireddy S; Srinivasan N Mol Omics; 2020 Oct; 16(5):474-491. PubMed ID: 32696772 [TBL] [Abstract][Full Text] [Related]
20. Navigating Chemical Space by Interfacing Generative Artificial Intelligence and Molecular Docking. Xu Z; Wauchope OR; Frank AT J Chem Inf Model; 2021 Nov; 61(11):5589-5600. PubMed ID: 34633194 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]