These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 34662298)

  • 1. Whole cell microalgal-cyanobacterial array biosensor for monitoring Cd, Cr and Zn in aquatic systems.
    Rathnayake IVN; Munagamage T; Pathirathne A; Megharaj M
    Water Sci Technol; 2021 Oct; 84(7):1579-1593. PubMed ID: 34662298
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sol-Gel Immobilized Optical Microalgal Biosensor for Monitoring Cd, Cu and Zn Bioavailability in Freshwater.
    Rathnayake IVN; Megharaj M; Naidu R
    Bull Environ Contam Toxicol; 2023 Mar; 110(4):73. PubMed ID: 37000234
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of the microalgae Phormidium tenue and Chlorella vulgaris as biosorbents of Cd and Zn from aqueous environments.
    Al-Khiat SH; Bukhari NA; Ameen F; Abdel-Raouf N
    Environ Res; 2023 Oct; 235():116675. PubMed ID: 37453511
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensitivity of Four Cyanobacterial Isolates from Tropical Freshwaters to Environmentally Realistic Concentrations of Cr(6+), Cd(2+) and Zn(2.).
    Munagamage T; Rathnayake IV; Pathiratne A; Megharaj M
    Bull Environ Contam Toxicol; 2016 Jun; 96(6):816-21. PubMed ID: 27101284
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phycoremediation of heavy metals using transgenic microalgae.
    Rajamani S; Siripornadulsil S; Falcao V; Torres M; Colepicolo P; Sayre R
    Adv Exp Med Biol; 2007; 616():99-109. PubMed ID: 18161494
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a broad-spectrum fluorescent heavy metal bacterial biosensor.
    Gireesh-Babu P; Chaudhari A
    Mol Biol Rep; 2012 Dec; 39(12):11225-9. PubMed ID: 23070906
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An optical biosensor from green fluorescent Escherichia coli for the evaluation of single and combined heavy metal toxicities.
    Futra D; Heng LY; Ahmad A; Surif S; Ling TL
    Sensors (Basel); 2015 May; 15(6):12668-81. PubMed ID: 26029952
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interference of heavy metals on the photosynthetic response from a Cr(VI)-resistant Dictyosphaerium chlorelloides strain.
    D'ors A; Cortés AA; Sánchez-Fortún A; Bartolomé MC; Sánchez-Fortún S
    Ecotoxicology; 2016 Jan; 25(1):15-21. PubMed ID: 26458928
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Performance of a cyanobacteria whole cell-based fluorescence biosensor for heavy metal and pesticide detection.
    Shing WL; Heng LY; Surif S
    Sensors (Basel); 2013 May; 13(5):6394-404. PubMed ID: 23673679
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of carbon nanotubes on the toxicities of copper, cadmium and zinc toward the freshwater microalgae Scenedesmus obliquus.
    Sun C; Li W; Xu Y; Hu N; Ma J; Cao W; Sun S; Hu C; Zhao Y; Huang Q
    Aquat Toxicol; 2020 Jul; 224():105504. PubMed ID: 32450458
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simultaneous determination of pH, urea, acetylcholine and heavy metals using array-based enzymatic optical biosensor.
    Tsai HC; Doong RA
    Biosens Bioelectron; 2005 Mar; 20(9):1796-804. PubMed ID: 15681196
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of Growth Performance, Pigment Synthesis, and Esterase Activity of Synechococcus sp. HS01 and Limnothrix sp. KO01 in Response to Cadmium Toxicity.
    Azarivand A; Noghabi NA; Shahryari S; Vali H; Zahiri HS; Noghabi KA
    Curr Microbiol; 2022 Mar; 79(4):125. PubMed ID: 35258711
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Whole cell environmental biosensor on diamond.
    Chong KF; Loh KP; Ang K; Ting YP
    Analyst; 2008 Jun; 133(6):739-43. PubMed ID: 18493672
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel in vivo β carotene biosensor for heavy metals detection.
    Wong LS; Lee BR; Koh CE; Ong YQ; Choong CW
    J Environ Biol; 2015 Nov; 36(6):1277-81. PubMed ID: 26688961
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel approach for rapidly and cost-effectively assessing toxicity of toxic metals in acidic water using an acidophilic iron-oxidizing biosensor.
    Yang SH; Cheng KC; Liao VH
    Chemosphere; 2017 Nov; 186():446-452. PubMed ID: 28806672
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phenotypic changes in microalgae at acidic pH mediate their tolerance to higher concentrations of transition metals.
    Abinandan S; Venkateswarlu K; Megharaj M
    Curr Res Microb Sci; 2021 Dec; 2():100081. PubMed ID: 35028626
    [TBL] [Abstract][Full Text] [Related]  

  • 17. p-Benzoquinone-mediated amperometric biosensor developed with Psychrobacter sp. for toxicity testing of heavy metals.
    Wang X; Liu M; Wang X; Wu Z; Yang L; Xia S; Chen L; Zhao J
    Biosens Bioelectron; 2013 Mar; 41():557-62. PubMed ID: 23062555
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temperature and irradiance influences on cadmium and zinc uptake and toxicity in a freshwater cyanobacterium, Microcystis aeruginosa.
    Zeng J; Wang WX
    J Hazard Mater; 2011 Jun; 190(1-3):922-9. PubMed ID: 21536379
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioavailable nitrate detection in water by an immobilized luminescent cyanobacterial reporter strain.
    Mbeunkui F; Richaud C; Etienne AL; Schmid RD; Bachmann TT
    Appl Microbiol Biotechnol; 2002 Nov; 60(3):306-12. PubMed ID: 12436312
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optical algal biosensor using alkaline phosphatase for determination of heavy metals.
    Durrieu C; Tran-Minh C
    Ecotoxicol Environ Saf; 2002 Mar; 51(3):206-9. PubMed ID: 11971642
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.