BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 34662311)

  • 1. Selective adsorption of phosphate by carboxyl-modified activated carbon electrodes for capacitive deionization.
    Miao L; Deng W; Chen X; Gao M; Chen W; Ao T
    Water Sci Technol; 2021 Oct; 84(7):1757-1773. PubMed ID: 34662311
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel Composite Electrodes for Selective Removal of Sulfate by the Capacitive Deionization Process.
    Zuo K; Kim J; Jain A; Wang T; Verduzco R; Long M; Li Q
    Environ Sci Technol; 2018 Aug; 52(16):9486-9494. PubMed ID: 30041515
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface-treated carbon electrodes with modified potential of zero charge for capacitive deionization.
    Wu T; Wang G; Zhan F; Dong Q; Ren Q; Wang J; Qiu J
    Water Res; 2016 Apr; 93():30-37. PubMed ID: 26878480
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selectivity adsorption of sulfate by amino-modified activated carbon during capacitive deionization.
    Chen X; Deng W; Miao L; Gao M; Ao T; Chen W; Ueyama T; Dai Q
    Environ Technol; 2023 Apr; 44(10):1505-1517. PubMed ID: 34762018
    [No Abstract]   [Full Text] [Related]  

  • 5. Hybrid capacitive deionization of NaCl and toxic heavy metal ions using faradic electrodes of silver nanospheres decorated pomegranate peel-derived activated carbon.
    Bharath G; Hai A; Rambabu K; Ahmed F; Haidyrah AS; Ahmad N; Hasan SW; Banat F
    Environ Res; 2021 Jun; 197():111110. PubMed ID: 33864793
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Capacitive deionization of arsenic-contaminated groundwater in a single-pass mode.
    Fan CS; Liou SYH; Hou CH
    Chemosphere; 2017 Oct; 184():924-931. PubMed ID: 28655111
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pseudocapacitive Behaviors of Polypyrrole Grafted Activated Carbon and MnO
    Tan G; Lu S; Xu N; Gao D; Zhu X
    Environ Sci Technol; 2020 May; 54(9):5843-5852. PubMed ID: 32243751
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adsorption characteristics of vanadium on different resin-active carbon composite electrodes in capacitive deionization.
    Cui Y; Bao S; Zhang Y; Duan J
    Chemosphere; 2018 Dec; 212():34-40. PubMed ID: 30138853
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced capacitive deionization of a low-concentration brackish water with protonated carbon nitride-decorated graphene oxide electrode.
    Yu J; Liu Y; Zhang X; Liu R; Yang Q; Hu S; Song H; Li P; Li A; Zhang S
    Chemosphere; 2022 Apr; 293():133580. PubMed ID: 35026198
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ZnCl
    Wu S; Yan P; Yang W; Zhou J; Wang H; Che L; Zhu P
    Chemosphere; 2021 Feb; 264(Pt 2):128557. PubMed ID: 33049504
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of Activated Carbon Decorated with ZnO Nanorod-Based Electrodes for Desalination of Brackish Water Using Capacitive Deionization Technology.
    Martinez J; Colán M; Castillón R; Ramos PG; Paria R; Sánchez L; Rodríguez JM
    Int J Mol Sci; 2023 Jan; 24(2):. PubMed ID: 36674925
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Perfect divalent cation selectivity with capacitive deionization.
    Uwayid R; Guyes EN; Shocron AN; Gilron J; Elimelech M; Suss ME
    Water Res; 2022 Feb; 210():117959. PubMed ID: 34942526
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation, quantification and application of the effect of functional groups on anion selectivity in capacitive deionization.
    Deng W; Chen Y; Wang Z; Chen X; Gao M; Chen F; Chen W; Ao T
    Water Res; 2022 Aug; 222():118927. PubMed ID: 35933818
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of the chemical bond on the electrosorption and desorption of anions during capacitive deionization.
    Sun Z; Li Q; Chai L; Shu Y; Wang Y; Qiu D
    Chemosphere; 2019 Aug; 229():341-348. PubMed ID: 31078891
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Capacitive deionization of a RO brackish water by AC/graphene composite electrodes.
    Chong LG; Chen PA; Huang JY; Huang HL; Wang HP
    Chemosphere; 2018 Jan; 191():296-301. PubMed ID: 29045931
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous Efficient Decontamination of Bacteria and Heavy Metals via Capacitive Deionization Using Polydopamine/Polyhexamethylene Guanidine Co-deposited Activated Carbon Electrodes.
    Liu N; Ren P; Saleem A; Feng W; Huo J; Ma H; Li S; Li P; Huang W
    ACS Appl Mater Interfaces; 2021 Dec; 13(51):61669-61680. PubMed ID: 34915703
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adsorption-capacitive deionization hybrid system with activated carbon of modified potential of zero charge.
    Sufiani O; Elisadiki J; Tanaka H; Teshima K; Sahini MG; Machunda RL; Jande YAC
    Environ Res; 2023 Feb; 219():115114. PubMed ID: 36574800
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphate selective recovery by magnetic iron oxide impregnated carbon flow-electrode capacitive deionization (FCDI).
    Zhang C; Wang M; Xiao W; Ma J; Sun J; Mo H; Waite TD
    Water Res; 2021 Feb; 189():116653. PubMed ID: 33232816
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel graphene-like electrodes for capacitive deionization.
    Li H; Zou L; Pan L; Sun Z
    Environ Sci Technol; 2010 Nov; 44(22):8692-7. PubMed ID: 20964326
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of layered double hydroxide-based hybrid electrode for efficient removal of phosphate ions in capacitive deionization.
    Geng X; Kuai J; Ren X; Guo W
    Water Sci Technol; 2022 Dec; 86(11):3014-3027. PubMed ID: 36515203
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.