These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 34662558)

  • 1. General tissue mass transfer model for cryopreservation applications.
    Warner RM; Shuttleworth R; Benson JD; Eroglu A; Higgins AZ
    Biophys J; 2021 Nov; 120(22):4980-4991. PubMed ID: 34662558
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mathematical modeling of cryoprotectant addition and removal for the cryopreservation of engineered or natural tissues.
    Lawson A; Mukherjee IN; Sambanis A
    Cryobiology; 2012 Feb; 64(1):1-11. PubMed ID: 22142903
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cryoprotectant kinetic analysis of a human articular cartilage vitrification protocol.
    Shardt N; Al-Abbasi KK; Yu H; Jomha NM; McGann LE; Elliott JA
    Cryobiology; 2016 Aug; 73(1):80-92. PubMed ID: 27221520
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling the Simultaneous Transport of Multiple Cryoprotectants into Articular Cartilage Using a Triphasic Model.
    Clark S; Jomha NM; Elliott JAW
    J Phys Chem B; 2022 Nov; 126(46):9566-9579. PubMed ID: 36351190
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of five additives to mitigate toxicity of cryoprotective agents on porcine chondrocytes.
    Wu K; Laouar L; Dong R; Elliott JAW; Jomha NM
    Cryobiology; 2019 Jun; 88():98-105. PubMed ID: 30826335
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid quantification of multi-cryoprotectant toxicity using an automated liquid handling method.
    Warner RM; Ampo E; Nelson D; Benson JD; Eroglu A; Higgins AZ
    Cryobiology; 2021 Feb; 98():219-232. PubMed ID: 33157080
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mathematically optimized cryoprotectant equilibration procedures for cryopreservation of human oocytes.
    Davidson AF; Benson JD; Higgins AZ
    Theor Biol Med Model; 2014 Mar; 11():13. PubMed ID: 24649826
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transport phenomena in articular cartilage cryopreservation as predicted by the modified triphasic model and the effect of natural inhomogeneities.
    Abazari A; Thompson RB; Elliott JA; McGann LE
    Biophys J; 2012 Mar; 102(6):1284-93. PubMed ID: 22455911
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using engineering models to shorten cryoprotectant loading time for the vitrification of articular cartilage.
    Shardt N; Chen Z; Yuan SC; Wu K; Laouar L; Jomha NM; Elliott JAW
    Cryobiology; 2020 Feb; 92():180-188. PubMed ID: 31952947
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of three multi-cryoprotectant loading protocols for vitrification of porcine articular cartilage.
    Wu K; Shardt N; Laouar L; Chen Z; Prasad V; Elliott JAW; Jomha NM
    Cryobiology; 2020 Feb; 92():151-160. PubMed ID: 31917159
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Osmometric Measurements of Cryoprotective Agent Permeation into Tissues.
    Wu K; Laouar L; Shardt N; Elliott JAW; Jomha NM
    Methods Mol Biol; 2021; 2180():303-315. PubMed ID: 32797417
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cryoprotective agent toxicity interactions in human articular chondrocytes.
    Almansoori KA; Prasad V; Forbes JF; Law GK; McGann LE; Elliott JA; Jomha NM
    Cryobiology; 2012 Jun; 64(3):185-91. PubMed ID: 22274740
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiple cryoprotectant toxicity model for vitrification solution optimization.
    Warner RM; Brown KS; Benson JD; Eroglu A; Higgins AZ
    Cryobiology; 2022 Oct; 108():1-9. PubMed ID: 36113568
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modelling and experimental studies on mass transport of multiple cryoprotective agents in articular cartilage.
    Yu X; Zhang S; Chen G
    Cryobiology; 2022 Oct; 108():57-66. PubMed ID: 35918000
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of vitrification cryopreservation on follicular morphology and stress relaxation behaviors of human ovarian tissues: sucrose versus trehalose as the non-permeable protective agent.
    Tian T; Zhao G; Han D; Zhu K; Chen D; Zhang Z; Wei Z; Cao Y; Zhou P
    Hum Reprod; 2015 Apr; 30(4):877-83. PubMed ID: 25662812
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cryoprotectants: A review of the actions and applications of cryoprotective solutes that modulate cell recovery from ultra-low temperatures.
    Elliott GD; Wang S; Fuller BJ
    Cryobiology; 2017 Jun; 76():74-91. PubMed ID: 28428046
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Statistical prediction of the vitrifiability and glass stability of multi-component cryoprotective agent solutions.
    Weiss AD; Forbes JF; Scheuerman A; Law GK; Elliott JA; McGann LE; Jomha NM
    Cryobiology; 2010 Aug; 61(1):123-7. PubMed ID: 20558152
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simultaneous monitoring of different vitrification solution components permeating into tissues.
    Vásquez-Rivera A; Sommer KK; Oldenhof H; Higgins AZ; Brockbank KGM; Hilfiker A; Wolkers WF
    Analyst; 2018 Jan; 143(2):420-428. PubMed ID: 29236110
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cryopreservation of articular cartilage.
    Abazari A; Jomha NM; Elliott JA; McGann LE
    Cryobiology; 2013 Jun; 66(3):201-9. PubMed ID: 23499618
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Clinical efflux of cryoprotective agents from vitrified human articular cartilage.
    Yu H; Al-Abbasi KK; Elliott JA; McGann LE; Jomha NM
    Cryobiology; 2013 Apr; 66(2):121-5. PubMed ID: 23291303
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.