BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 34662574)

  • 1. Calcium ions-effect on performance, growth and extracellular nature of microalgal-bacterial symbiosis system treating wastewater.
    Tang CC; Zhang XY; Wang R; Wang TY; He ZW; Wang XC
    Environ Res; 2022 May; 207():112228. PubMed ID: 34662574
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of types and dosages of cations with low valance states on microalgal-bacterial symbiosis system treating wastewater.
    Tang CC; Wang TY; Zhang XY; Wang R; He ZW; Li Z; Wang XC
    Bioresour Technol; 2022 Oct; 361():127755. PubMed ID: 35944866
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insights into roles of triclosan in microalgal-bacterial symbiosis system treating wastewater.
    Tang CC; Wang TY; Wang R; Varrone C; Gan Z; He ZW; Li ZH; Wang XC
    Bioresour Technol; 2023 Oct; 385():129331. PubMed ID: 37355143
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Constructed microalgal-bacterial symbiotic (MBS) system: Classification, performance, partnerships and perspectives.
    Wang H; Deng L; Qi Z; Wang W
    Sci Total Environ; 2022 Jan; 803():150082. PubMed ID: 34525774
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biological performance and membrane fouling of a microalgal-bacterial membrane photobioreactor for wastewater treatment without external aeration and carbonation.
    Wang Z; Liao Y; Yan L; Liao B
    Environ Res; 2024 Apr; 247():118272. PubMed ID: 38246292
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microalgae recycling improves biomass recovery from wastewater treatment high rate algal ponds.
    Gutiérrez R; Ferrer I; González-Molina A; Salvadó H; García J; Uggetti E
    Water Res; 2016 Dec; 106():539-549. PubMed ID: 27771604
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Removal and recovery of nutrients from septic tank wastewater using microalgae: Key factors and practical implications.
    Nakarmi KJ; Daneshvar E; Mänttäri M; Bhatnagar A
    J Environ Manage; 2023 Nov; 345():118922. PubMed ID: 37688963
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Advances, challenges, and prospects in microalgal-bacterial symbiosis system treating heavy metal wastewater.
    Zhou XR; Wang R; Tang CC; Varrone C; He ZW; Li ZH; Wang XC
    Chemosphere; 2023 Dec; 345():140448. PubMed ID: 37839742
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tetracycline-induced decoupling of symbiosis in microalgal-bacterial granular sludge.
    Wang S; Ji B; Zhang M; Gu J; Ma Y; Liu Y
    Environ Res; 2021 Jun; 197():111095. PubMed ID: 33811864
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrating anaerobic digestion and microalgae cultivation for dairy wastewater treatment and potential biochemicals production from the harvested microalgal biomass.
    Kusmayadi A; Lu PH; Huang CY; Leong YK; Yen HW; Chang JS
    Chemosphere; 2022 Mar; 291(Pt 1):133057. PubMed ID: 34838828
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microalgal wastewater recycling: Suitability of harvesting methods and influence on growth mechanisms.
    Sun J; Jiang S; Yang L; Chu H; Peng BY; Xiao S; Wang Y; Zhou X; Zhang Y
    Sci Total Environ; 2023 Feb; 859(Pt 2):160237. PubMed ID: 36402329
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancing biolipid production and self-flocculation of Chlorella vulgaris by extracellular polymeric substances from granular sludge with CO
    Liu X; Ji B; Li A
    Water Res; 2023 Jun; 236():119960. PubMed ID: 37054610
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced microalgae cultivation using wastewater nutrients extracted by a microbial electrochemical system.
    Wang Z; Hartline CJ; Zhang F; He Z
    Water Res; 2021 Nov; 206():117722. PubMed ID: 34637970
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of phosphate in microalgal-bacterial symbiosis system treating wastewater containing heavy metals.
    Tang CC; Hu YR; Zhang M; Chen SL; He ZW; Li ZH; Tian Y; Wang XC
    Environ Pollut; 2024 May; 349():123951. PubMed ID: 38604305
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioflocculation formation of microalgae-bacteria in enhancing microalgae harvesting and nutrient removal from wastewater effluent.
    Nguyen TDP; Le TVA; Show PL; Nguyen TT; Tran MH; Tran TNT; Lee SY
    Bioresour Technol; 2019 Jan; 272():34-39. PubMed ID: 30308405
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Towards advanced nutrient removal by microalgae-bacteria symbiosis system for wastewater treatment.
    Qv M; Dai D; Liu D; Wu Q; Tang C; Li S; Zhu L
    Bioresour Technol; 2023 Feb; 370():128574. PubMed ID: 36603749
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Revealing mechanisms of triclosan on the removal and distribution of nitrogen and phosphorus in microalgal-bacterial symbiosis system.
    Chen SL; Wang TY; Tang CC; Wang R; He ZW; Li ZH; Tian Y; Wang XC
    Environ Pollut; 2023 Nov; 337():122539. PubMed ID: 37699452
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Auto-flocculation microalgae species Tribonema sp. and Synechocystis sp. with T-IPL pretreatment to improve swine wastewater nutrient removal.
    Cheng P; Chen D; Liu W; Cobb K; Zhou N; Liu Y; Liu H; Wang Q; Chen P; Zhou C; Ruan R
    Sci Total Environ; 2020 Jul; 725():138263. PubMed ID: 32304959
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of CO₂ addition along a pH gradient on wastewater microalgal photo-physiology, biomass production and nutrient removal.
    Sutherland DL; Howard-Williams C; Turnbull MH; Broady PA; Craggs RJ
    Water Res; 2015 Mar; 70():9-26. PubMed ID: 25499895
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Municipal wastewater treatment via co-immobilized microalgal-bacterial symbiosis: Microorganism growth and nutrients removal.
    Shen Y; Gao J; Li L
    Bioresour Technol; 2017 Nov; 243():905-913. PubMed ID: 28738545
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.