These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
270 related articles for article (PubMed ID: 34662705)
1. Sequence complementarity between human noncoding RNAs and SARS-CoV-2 genes: What are the implications for human health? Talotta R; Bahrami S; Laska MJ Biochim Biophys Acta Mol Basis Dis; 2022 Feb; 1868(2):166291. PubMed ID: 34662705 [TBL] [Abstract][Full Text] [Related]
2. COVID-19 mRNA vaccines as hypothetical epigenetic players: Results from an in silico analysis, considerations and perspectives. Talotta R Vaccine; 2023 Aug; 41(35):5182-5194. PubMed ID: 37453842 [TBL] [Abstract][Full Text] [Related]
3. SARS-CoV infection crosstalk with human host cell noncoding-RNA machinery: An in-silico approach. Yousefi H; Poursheikhani A; Bahmanpour Z; Vatanmakanian M; Taheri M; Mashouri L; Alahari SK Biomed Pharmacother; 2020 Oct; 130():110548. PubMed ID: 33475497 [TBL] [Abstract][Full Text] [Related]
4. Illuminating the pathogenic role of SARS-CoV-2: Insights into competing endogenous RNAs (ceRNAs) regulatory networks. Aghajani Mir M Infect Genet Evol; 2024 Aug; 122():105613. PubMed ID: 38844190 [TBL] [Abstract][Full Text] [Related]
5. A new insight into sex-specific non-coding RNAs and networks in response to SARS-CoV-2. Askari N; Hadizadeh M; Rashidifar M Infect Genet Evol; 2022 Jan; 97():105195. PubMed ID: 34954105 [TBL] [Abstract][Full Text] [Related]
6. The interplay between lncRNAs, RNA-binding proteins and viral genome during SARS-CoV-2 infection reveals strong connections with regulatory events involved in RNA metabolism and immune response. Enguita FJ; Leitão AL; McDonald JT; Zaksas V; Das S; Galeano D; Taylor D; Wurtele ES; Saravia-Butler A; Baylin SB; Meller R; Porterfield DM; Wallace DC; Schisler JC; Mason CE; Beheshti A Theranostics; 2022; 12(8):3946-3962. PubMed ID: 35664076 [No Abstract] [Full Text] [Related]
7. Comparative study of predicted miRNA between Indonesia and China (Wuhan) SARS-CoV-2: a bioinformatics analysis. Rahmadi A; Fasyah I; Sudigyo D; Budiarto A; Mahesworo B; Hidayat AA; Pardamean B Genes Genomics; 2021 Sep; 43(9):1079-1086. PubMed ID: 34152577 [TBL] [Abstract][Full Text] [Related]
8. The Neat Dance of COVID-19: NEAT1, DANCR, and Co-Modulated Cholinergic RNAs Link to Inflammation. Meydan C; Madrer N; Soreq H Front Immunol; 2020; 11():590870. PubMed ID: 33163005 [TBL] [Abstract][Full Text] [Related]
9. Genome interaction of the virus and the host genes and non-coding RNAs in SARS-CoV-2 infection. Serpeloni JM; Lima Neto QA; Lucio LC; Ramão A; Carvalho de Oliveira J; Gradia DF; Malheiros D; Ferrasa A; Marchi R; Figueiredo DLA; Silva WA; Ribeiro EMSF; Cólus IMS; Cavalli LR Immunobiology; 2021 Sep; 226(5):152130. PubMed ID: 34425415 [TBL] [Abstract][Full Text] [Related]
10. Emerging role of microRNAs and long non-coding RNAs in COVID-19 with implications to therapeutics. Arman K; Dalloul Z; Bozgeyik E Gene; 2023 Apr; 861():147232. PubMed ID: 36736508 [TBL] [Abstract][Full Text] [Related]
11. Non-coding RNAs expression in SARS-CoV-2 infection: pathogenesis, clinical significance, and therapeutic targets. Liu X; Xiong W; Ye M; Lu T; Yuan K; Chang S; Han Y; Wang Y; Lu L; Bao Y Signal Transduct Target Ther; 2023 Dec; 8(1):441. PubMed ID: 38057315 [TBL] [Abstract][Full Text] [Related]
12. Evaluation of the Expression of Infection-Related Long Noncoding RNAs among COVID-19 Patients: A Case-Control Study. Firoozi Z; Mohammadisoleimani E; Bagheri F; Taheri A; Pezeshki B; Naghizadeh MM; Daraei A; Karimi J; Gholampour Y; Mansoori Y; Montaseri Z Genet Res (Camb); 2024; 2024():3391054. PubMed ID: 38389521 [TBL] [Abstract][Full Text] [Related]
13. SARS-CoV-2, Cardiovascular Diseases, and Noncoding RNAs: A Connected Triad. Natarelli L; Virgili F; Weber C Int J Mol Sci; 2021 Nov; 22(22):. PubMed ID: 34830125 [TBL] [Abstract][Full Text] [Related]
14. NPInter v5.0: ncRNA interaction database in a new era. Zheng Y; Luo H; Teng X; Hao X; Yan X; Tang Y; Zhang W; Wang Y; Zhang P; Li Y; Zhao Y; Chen R; He S Nucleic Acids Res; 2023 Jan; 51(D1):D232-D239. PubMed ID: 36373614 [TBL] [Abstract][Full Text] [Related]
15. Non-coding RNAs derived from the foot-and-mouth disease virus genome trigger broad antiviral activity against coronaviruses. Rodríguez-Pulido M; Calvo-Pinilla E; Polo M; Saiz JC; Fernández-González R; Pericuesta E; Gutiérrez-Adán A; Sobrino F; Martín-Acebes MA; Sáiz M Front Immunol; 2023; 14():1166725. PubMed ID: 37063925 [TBL] [Abstract][Full Text] [Related]
17. Therapeutic perceptions in antisense RNA-mediated gene regulation for COVID-19. de Jesus SF; Santos LI; Rodrigues Neto JF; Vieira TM; Mendes JB; D'angelo MFSV; Guimaraes ALS Gene; 2021 Oct; 800():145839. PubMed ID: 34274470 [TBL] [Abstract][Full Text] [Related]
18. Intragenomic rearrangements involving 5'-untranslated region segments in SARS-CoV-2, other betacoronaviruses, and alphacoronaviruses. Patarca R; Haseltine WA Virol J; 2023 Feb; 20(1):36. PubMed ID: 36829234 [TBL] [Abstract][Full Text] [Related]
19. Detection of SARS-CoV-2 Derived Small RNAs and Changes in Circulating Small RNAs Associated with COVID-19. Grehl C; Schultheiß C; Hoffmann K; Binder M; Altmann T; Grosse I; Kuhlmann M Viruses; 2021 Aug; 13(8):. PubMed ID: 34452458 [TBL] [Abstract][Full Text] [Related]
20. Topological Analysis for Sequence Variability: Case Study on more than 2K SARS-CoV-2 sequences of COVID-19 infected 54 countries in comparison with SARS-CoV-1 and MERS-CoV. Sarkar JP; Saha I; Seal A; Maity D; Maulik U Infect Genet Evol; 2021 Mar; 88():104708. PubMed ID: 33421654 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]