BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 34663215)

  • 1. A representation and deep learning model for annotating ubiquitylation sentences stating E3 ligase - substrate interaction.
    Luo M; Li Z; Li S; Lee TY
    BMC Bioinformatics; 2021 Oct; 22(1):507. PubMed ID: 34663215
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of Substrate Ubiquitylation by E3 Ubiquitin-ligase in Mammalian Cell Lysates.
    Dos Passos PMS; Spagnol V; de Correia CRSTB; Teixeira FR
    J Vis Exp; 2022 May; (183):. PubMed ID: 35635462
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extraction of microRNA-target interaction sentences from biomedical literature by deep learning approach.
    Luo M; Li S; Pang Y; Yao L; Ma R; Huang HY; Huang HD; Lee TY
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36440972
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of E3 ubiquitin ligases by homotypic and heterotypic assembly.
    Balaji V; Hoppe T
    F1000Res; 2020; 9():. PubMed ID: 32076548
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In Vitro Analysis of E3 Ubiquitin Ligase Function.
    Müller L; Kutzner CE; Balaji V; Hoppe T
    J Vis Exp; 2021 May; (171):. PubMed ID: 34057440
    [TBL] [Abstract][Full Text] [Related]  

  • 6. UbiNet: an online resource for exploring the functional associations and regulatory networks of protein ubiquitylation.
    Nguyen VN; Huang KY; Weng JT; Lai KR; Lee TY
    Database (Oxford); 2016; 2016():. PubMed ID: 27114492
    [TBL] [Abstract][Full Text] [Related]  

  • 7. UbiComb: A Hybrid Deep Learning Model for Predicting Plant-Specific Protein Ubiquitylation Sites.
    Siraj A; Lim DY; Tayara H; Chong KT
    Genes (Basel); 2021 May; 12(5):. PubMed ID: 34064731
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of candidate substrates for the Golgi Tul1 E3 ligase using quantitative diGly proteomics in yeast.
    Tong Z; Kim MS; Pandey A; Espenshade PJ
    Mol Cell Proteomics; 2014 Nov; 13(11):2871-82. PubMed ID: 25078903
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The ubiquitin ligase SspH1 from
    Cook M; Delbecq SP; Schweppe TP; Guttman M; Klevit RE; Brzovic PS
    J Biol Chem; 2019 Jan; 294(3):783-793. PubMed ID: 30459234
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design Principles Involving Protein Disorder Facilitate Specific Substrate Selection and Degradation by the Ubiquitin-Proteasome System.
    Guharoy M; Bhowmick P; Tompa P
    J Biol Chem; 2016 Mar; 291(13):6723-31. PubMed ID: 26851277
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GPS-Uber: a hybrid-learning framework for prediction of general and E3-specific lysine ubiquitination sites.
    Wang C; Tan X; Tang D; Gou Y; Han C; Ning W; Lin S; Zhang W; Chen M; Peng D; Xue Y
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35037020
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep learning with sentence embeddings pre-trained on biomedical corpora improves the performance of finding similar sentences in electronic medical records.
    Chen Q; Du J; Kim S; Wilbur WJ; Lu Z
    BMC Med Inform Decis Mak; 2020 Apr; 20(Suppl 1):73. PubMed ID: 32349758
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coupled monoubiquitylation of the co-E3 ligase DCNL1 by Ariadne-RBR E3 ubiquitin ligases promotes cullin-RING ligase complex remodeling.
    Kelsall IR; Kristariyanto YA; Knebel A; Wood NT; Kulathu Y; Alpi AF
    J Biol Chem; 2019 Feb; 294(8):2651-2664. PubMed ID: 30587576
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PhenoDEF: a corpus for annotating sentences with information of phenotype definitions in biomedical literature.
    Binkheder S; Wu HY; Quinney SK; Zhang S; Zitu MM; Chiang CW; Wang L; Jones J; Li L
    J Biomed Semantics; 2022 Jun; 13(1):17. PubMed ID: 35690873
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bi-substrate kinetic analysis of an E3-ligase-dependent ubiquitylation reaction.
    Swinney DC; Rose MJ; Mak AY; Lee I; Scarafia L; Xu YZ
    Methods Enzymol; 2005; 399():323-33. PubMed ID: 16338366
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An integrated bioinformatics platform for investigating the human E3 ubiquitin ligase-substrate interaction network.
    Li Y; Xie P; Lu L; Wang J; Diao L; Liu Z; Guo F; He Y; Liu Y; Huang Q; Liang H; Li D; He F
    Nat Commun; 2017 Aug; 8(1):347. PubMed ID: 28839186
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CRL7
    Shah VJ; Maddika S
    J Cell Sci; 2018 Apr; 131(8):. PubMed ID: 29507117
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Role of HECT-Type E3 Ligase in the Development of Cardiac Disease.
    Goto J; Otaki Y; Watanabe T; Watanabe M
    Int J Mol Sci; 2021 Jun; 22(11):. PubMed ID: 34199773
    [TBL] [Abstract][Full Text] [Related]  

  • 19. UbiSite: incorporating two-layered machine learning method with substrate motifs to predict ubiquitin-conjugation site on lysines.
    Huang CH; Su MG; Kao HJ; Jhong JH; Weng SL; Lee TY
    BMC Syst Biol; 2016 Jan; 10 Suppl 1(Suppl 1):6. PubMed ID: 26818456
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A bacterial genetic selection system for ubiquitylation cascade discovery.
    Levin-Kravets O; Tanner N; Shohat N; Attali I; Keren-Kaplan T; Shusterman A; Artzi S; Varvak A; Reshef Y; Shi X; Zucker O; Baram T; Katina C; Pilzer I; Ben-Aroya S; Prag G
    Nat Methods; 2016 Nov; 13(11):945-952. PubMed ID: 27694912
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.