These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 34663699)

  • 41. Intersegmental coordination of the central pattern generator via interleaved electrical and chemical synapses in zebrafish spinal cord.
    Kim LU; Riecke H
    J Comput Neurosci; 2023 Feb; 51(1):129-147. PubMed ID: 36229719
    [TBL] [Abstract][Full Text] [Related]  

  • 42. In mice lacking V2a interneurons, gait depends on speed of locomotion.
    Crone SA; Zhong G; Harris-Warrick R; Sharma K
    J Neurosci; 2009 May; 29(21):7098-109. PubMed ID: 19474336
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Hierarchical control of locomotion by distinct types of spinal V2a interneurons in zebrafish.
    Menelaou E; McLean DL
    Nat Commun; 2019 Sep; 10(1):4197. PubMed ID: 31519892
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Spinal interneurons differentiate sequentially from those driving the fastest swimming movements in larval zebrafish to those driving the slowest ones.
    McLean DL; Fetcho JR
    J Neurosci; 2009 Oct; 29(43):13566-77. PubMed ID: 19864569
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Partly shared spinal cord networks for locomotion and scratching.
    Berkowitz A; Hao ZZ
    Integr Comp Biol; 2011 Dec; 51(6):890-902. PubMed ID: 21700568
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Spinal cords: Symphonies of interneurons across species.
    Wilson AC; Sweeney LB
    Front Neural Circuits; 2023; 17():1146449. PubMed ID: 37180760
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The spinal motor system in early vertebrates and some of its evolutionary changes.
    Fetcho JR
    Brain Behav Evol; 1992; 40(2-3):82-97. PubMed ID: 1422809
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Spinal cholinergic interneurons differentially control motoneuron excitability and alter the locomotor network operational range.
    Bertuzzi M; Ampatzis K
    Sci Rep; 2018 Jan; 8(1):1988. PubMed ID: 29386582
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Brainstem circuits encoding start, speed, and duration of swimming in adult zebrafish.
    Berg EM; Mrowka L; Bertuzzi M; Madrid D; Picton LD; El Manira A
    Neuron; 2023 Feb; 111(3):372-386.e4. PubMed ID: 36413988
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Spinal V1 neurons inhibit motor targets locally and sensory targets distally.
    Sengupta M; Daliparthi V; Roussel Y; Bui TV; Bagnall MW
    Curr Biol; 2021 Sep; 31(17):3820-3833.e4. PubMed ID: 34289387
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Spinal cholinergic interneurons regulate the excitability of motoneurons during locomotion.
    Miles GB; Hartley R; Todd AJ; Brownstone RM
    Proc Natl Acad Sci U S A; 2007 Feb; 104(7):2448-53. PubMed ID: 17287343
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Neuronal activity in the isolated mouse spinal cord during spontaneous deletions in fictive locomotion: insights into locomotor central pattern generator organization.
    Zhong G; Shevtsova NA; Rybak IA; Harris-Warrick RM
    J Physiol; 2012 Oct; 590(19):4735-59. PubMed ID: 22869012
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Positive feedback as a general mechanism for sustaining rhythmic and non-rhythmic activity.
    Roberts A; Perrins R
    J Physiol Paris; 1995; 89(4-6):241-8. PubMed ID: 8861822
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Functional projection distances of spinal interneurons mediating reciprocal inhibition during swimming in Xenopus tadpoles.
    Soffe SR; Zhao FY; Roberts A
    Eur J Neurosci; 2001 Feb; 13(3):617-27. PubMed ID: 11168570
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Roles for multifunctional and specialized spinal interneurons during motor pattern generation in tadpoles, zebrafish larvae, and turtles.
    Berkowitz A; Roberts A; Soffe SR
    Front Behav Neurosci; 2010; 4():36. PubMed ID: 20631847
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Intraspinal Sensory Neurons Provide Powerful Inhibition to Motor Circuits Ensuring Postural Control during Locomotion.
    Hubbard JM; Böhm UL; Prendergast A; Tseng PB; Newman M; Stokes C; Wyart C
    Curr Biol; 2016 Nov; 26(21):2841-2853. PubMed ID: 27720623
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A topographic map of recruitment in spinal cord.
    McLean DL; Fan J; Higashijima S; Hale ME; Fetcho JR
    Nature; 2007 Mar; 446(7131):71-5. PubMed ID: 17330042
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Physiology and morphology of shared and specialized spinal interneurons for locomotion and scratching.
    Berkowitz A
    J Neurophysiol; 2008 Jun; 99(6):2887-901. PubMed ID: 18385486
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A hybrid electrical/chemical circuit in the spinal cord generates a transient embryonic motor behavior.
    Knogler LD; Ryan J; Saint-Amant L; Drapeau P
    J Neurosci; 2014 Jul; 34(29):9644-55. PubMed ID: 25031404
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Human Spinal Motor Control.
    Nielsen JB
    Annu Rev Neurosci; 2016 Jul; 39():81-101. PubMed ID: 27023730
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.