These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 34663809)

  • 1. Augmented CO
    Choi HI; Hwang SW; Kim J; Park B; Jin E; Choi IG; Sim SJ
    Nat Commun; 2021 Oct; 12(1):6049. PubMed ID: 34663809
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CO2 , NOx and SOx removal from flue gas via microalgae cultivation: a critical review.
    Yen HW; Ho SH; Chen CY; Chang JS
    Biotechnol J; 2015 Jun; 10(6):829-39. PubMed ID: 25931246
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Valorization of Flue Gas by Combining Photocatalytic Gas Pretreatment with Microalgae Production.
    Eynde EV; Lenaerts B; Tytgat T; Blust R; Lenaerts S
    Environ Sci Technol; 2016 Mar; 50(5):2538-45. PubMed ID: 26838336
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of a microalga, Scenedesmus obliquus PF3, for the biological removal of nitric oxide (NO) and carbon dioxide.
    Ma S; Li D; Yu Y; Li D; Yadav RS; Feng Y
    Environ Pollut; 2019 Sep; 252(Pt A):344-351. PubMed ID: 31158663
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biosequestration of atmospheric CO2 and flue gas-containing CO2 by microalgae.
    Cheah WY; Show PL; Chang JS; Ling TC; Juan JC
    Bioresour Technol; 2015 May; 184():190-201. PubMed ID: 25497054
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbon dioxide capture strategies from flue gas using microalgae: a review.
    Thomas DM; Mechery J; Paulose SV
    Environ Sci Pollut Res Int; 2016 Sep; 23(17):16926-40. PubMed ID: 27397026
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Knockdown of carbonate anhydrase elevates Nannochloropsis productivity at high CO
    Wei L; Shen C; El Hajjami M; You W; Wang Q; Zhang P; Ji Y; Hu H; Hu Q; Poetsch A; Xu J
    Metab Eng; 2019 Jul; 54():96-108. PubMed ID: 30904735
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Current Techniques of Growing Algae Using Flue Gas from Exhaust Gas Industry: a Review.
    Huang G; Chen F; Kuang Y; He H; Qin A
    Appl Biochem Biotechnol; 2016 Mar; 178(6):1220-38. PubMed ID: 26695777
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Utilization of carbon dioxide in industrial flue gases for the cultivation of microalga Chlorella sp.
    Kao CY; Chen TY; Chang YB; Chiu TW; Lin HY; Chen CD; Chang JS; Lin CS
    Bioresour Technol; 2014 Aug; 166():485-93. PubMed ID: 24950094
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chloroplast engineering of the green microalgae Chlamydomonas reinhardtii for the production of HAA, the lipid moiety of rhamnolipid biosurfactants.
    Miró-Vinyals B; Artigues M; Wostrikoff K; Monte E; Broto-Puig F; Leivar P; Planas A
    N Biotechnol; 2023 Sep; 76():1-12. PubMed ID: 37004923
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Utilizing CO
    Comley JG; Scott JA; Laamanen CA
    Crit Rev Biotechnol; 2024 Aug; 44(5):910-923. PubMed ID: 37500178
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Progress in biofixation of CO2 from combustion flue gas by microalgae].
    Zhang Y; Zhao B; Xiong K; Zhang Z; Hao X; Liu T
    Sheng Wu Gong Cheng Xue Bao; 2011 Feb; 27(2):164-71. PubMed ID: 21650040
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biofixation of Air Emissions and Biomass Valorization-Evaluation of Microalgal Biotechnology.
    Biscaia WL; Miyawaki B; de Mello TC; de Vasconcelos EC; de Arruda NMB; Maranho LT
    Appl Biochem Biotechnol; 2022 Sep; 194(9):4033-4048. PubMed ID: 35587326
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-CO2 tolerance in microalgae: possible mechanisms and implications for biotechnology and bioremediation.
    Solovchenko A; Khozin-Goldberg I
    Biotechnol Lett; 2013 Nov; 35(11):1745-52. PubMed ID: 23801125
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Maximize microalgal carbon dioxide utilization and lipid productivity by using toxic flue gas compounds as nutrient source.
    Singh Chauhan D; Sahoo L; Mohanty K
    Bioresour Technol; 2022 Mar; 348():126784. PubMed ID: 35104656
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mass transfer characteristics and effect of flue gas used in microalgae culture.
    Wang B; Xu YF; Sun ZL
    Appl Microbiol Biotechnol; 2022 Nov; 106(21):7013-7025. PubMed ID: 36173453
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heavy metal bioremediation of coal-fired flue gas using microalgae under different CO
    Aslam A; Thomas-Hall SR; Mughal T; Zaman QU; Ehsan N; Javied S; Schenk PM
    J Environ Manage; 2019 Jul; 241():243-250. PubMed ID: 31005725
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrating Transcriptomics and Metabolomics to Characterize Metabolic Regulation to Elevated CO
    Zhang Y; Gu Z; Ren Y; Wang L; Zhang J; Liang C; Tong S; Wang Y; Xu D; Zhang X; Ye N
    Mar Biotechnol (NY); 2021 Apr; 23(2):255-275. PubMed ID: 33689052
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneous microalgal biomass production and CO
    Kuo CM; Jian JF; Lin TH; Chang YB; Wan XH; Lai JT; Chang JS; Lin CS
    Bioresour Technol; 2016 Dec; 221():241-250. PubMed ID: 27643732
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modification and improvement of microalgae strains for strengthening CO
    Cheng J; Zhu Y; Zhang Z; Yang W
    Bioresour Technol; 2019 Nov; 291():121850. PubMed ID: 31358426
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.