These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 34663814)

  • 1. Data-driven simulation and characterisation of gold nanoparticle melting.
    Zeni C; Rossi K; Pavloudis T; Kioseoglou J; de Gironcoli S; Palmer RE; Baletto F
    Nat Commun; 2021 Oct; 12(1):6056. PubMed ID: 34663814
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Approach and Coalescence of Gold Nanoparticles Driven by Surface Thermodynamic Fluctuations and Atomic Interaction Forces.
    Wang J; Chen S; Cui K; Li D; Chen D
    ACS Nano; 2016 Feb; 10(2):2893-902. PubMed ID: 26756675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting the Physicochemical Properties and Biological Activities of Monolayer-Protected Gold Nanoparticles Using Simulation-Derived Descriptors.
    Chew AK; Pedersen JA; Van Lehn RC
    ACS Nano; 2022 Apr; 16(4):6282-6292. PubMed ID: 35289596
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Melting of Ni and Fe nanoparticles: a molecular dynamics study with application to carbon nanotube synthesis.
    Joshi NP; Spearot DE; Bhat D
    J Nanosci Nanotechnol; 2010 Sep; 10(9):5587-93. PubMed ID: 21133078
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular dynamics simulations of the melting of aluminum nanoparticles.
    Alavi S; Thompson DL
    J Phys Chem A; 2006 Feb; 110(4):1518-23. PubMed ID: 16435812
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of shell thickness on the thermal stability and melting-like behavior of Al@Fe core-shell nanoparticles from atomistic simulations: a structural and dynamic description.
    Cuba-Supanta G; Pinto-Vergara MZ; Huaman Morales E; Romero Peña MH; Rojas-Tapia J
    J Phys Condens Matter; 2023 May; 35(32):. PubMed ID: 37146619
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermal Stability and Melting Dynamics of Bimetallic Au@Pt@Au Core-Shell Nanoparticles.
    Borysiuk V; Lyashenko IA; Popov VL
    Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420645
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Size and shape dependent melting temperature of metallic nanomaterials.
    Zhang X; Li W; Wu D; Deng Y; Shao J; Chen L; Fang D
    J Phys Condens Matter; 2019 Feb; 31(7):075701. PubMed ID: 30523806
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Size-dependent melting and coalescence of tungsten nanoclusters via molecular dynamics simulation.
    Liu CM; Xu C; Cheng Y; Chen XR; Cai LC
    Phys Chem Chem Phys; 2013 Sep; 15(33):14069-79. PubMed ID: 23852181
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A universal signature in the melting of metallic nanoparticles.
    Delgado-Callico L; Rossi K; Pinto-Miles R; Salzbrenner P; Baletto F
    Nanoscale; 2021 Jan; 13(2):1172-1180. PubMed ID: 33404027
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solid-liquid and liquid-solid transitions in metal nanoparticles.
    Hou M
    Phys Chem Chem Phys; 2017 Feb; 19(8):5994-6005. PubMed ID: 28181623
    [TBL] [Abstract][Full Text] [Related]  

  • 12. String-like collective atomic motion in the melting and freezing of nanoparticles.
    Zhang H; Kalvapalle P; Douglas JF
    J Phys Chem B; 2011 Dec; 115(48):14068-76. PubMed ID: 21718061
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermal transport at a solid-nanofluid interface: from increase of thermal resistance towards a shift of rapid boiling.
    Han H; Merabia S; Müller-Plathe F
    Nanoscale; 2017 Jun; 9(24):8314-8320. PubMed ID: 28585964
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computing the melting point and thermodynamic stability of the orthorhombic and monoclinic crystalline polymorphs of the ionic liquid 1-n-butyl-3-methylimidazolium chloride.
    Jayaraman S; Maginn EJ
    J Chem Phys; 2007 Dec; 127(21):214504. PubMed ID: 18067361
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular dynamics simulation of nanofilament breakage in neuromorphic nanoparticle networks.
    Wu W; Pavloudis T; Verkhovtsev AV; Solov'yov AV; Palmer RE
    Nanotechnology; 2022 Apr; 33(27):. PubMed ID: 35412471
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Melting of monatomic glass with free surfaces.
    Hoang VV; Dong TQ
    J Chem Phys; 2012 Mar; 136(10):104506. PubMed ID: 22423847
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Data scheme and data format for transferable force fields for molecular simulation.
    Kanagalingam G; Schmitt S; Fleckenstein F; Stephan S
    Sci Data; 2023 Jul; 10(1):495. PubMed ID: 37500652
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechano-chemical stability of gold nanoparticles coated with alkanethiolate SAMs.
    Henz BJ; Hawa T; Zachariah MR
    Langmuir; 2008 Feb; 24(3):773-83. PubMed ID: 18189429
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermal Stability of Platinum-Cobalt Bimetallic Nanoparticles: Chemically Disordered Alloys, Ordered Intermetallics, and Core-Shell Structures.
    Huang R; Shao GF; Zhang Y; Wen YH
    ACS Appl Mater Interfaces; 2017 Apr; 9(14):12486-12493. PubMed ID: 28349693
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular Dynamics Simulation of Polarizable Gold Nanoparticles Interacting with Sodium Citrate.
    Perfilieva OA; Pyshnyi DV; Lomzov AA
    J Chem Theory Comput; 2019 Feb; 15(2):1278-1292. PubMed ID: 30576603
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.