These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 34663832)
1. Shifting beams at normal incidence via controlling momentum-space geometric phases. Wang J; Zhao M; Liu W; Guan F; Liu X; Shi L; Chan CT; Zi J Nat Commun; 2021 Oct; 12(1):6046. PubMed ID: 34663832 [TBL] [Abstract][Full Text] [Related]
2. Goos-Hänchen and Imbert-Fedorov shifts of higher-order Laguerre-Gaussian beams reflected from a dielectric slab. Pichugin KN; Maksimov DN; Sadreev AF J Opt Soc Am A Opt Image Sci Vis; 2018 Aug; 35(8):1324-1329. PubMed ID: 30110294 [TBL] [Abstract][Full Text] [Related]
3. Goos-Hanchen and Imbert-Fedorov shifts for Hermite-Gauss beams. Prajapati C; Ranganathan D J Opt Soc Am A Opt Image Sci Vis; 2012 Jul; 29(7):1377-82. PubMed ID: 22751403 [TBL] [Abstract][Full Text] [Related]
4. Goos-Hänchen and Imbert-Fedorov shifts: relation with the irradiance moments of a beam. Berbel MA; Cunillera A; Martínez-Herrero R J Opt Soc Am A Opt Image Sci Vis; 2018 Feb; 35(2):286-292. PubMed ID: 29400877 [TBL] [Abstract][Full Text] [Related]
6. Role of beam propagation in Goos-Hänchen and Imbert-Fedorov shifts. Aiello A; Woerdman JP Opt Lett; 2008 Jul; 33(13):1437-9. PubMed ID: 18594657 [TBL] [Abstract][Full Text] [Related]
7. Spatial Goos-Hänchen and Imbert-Fedorov shifts of rotational 2-D finite energy Airy beams. Gao M; Deng D Opt Express; 2020 Mar; 28(7):10531-10541. PubMed ID: 32225636 [TBL] [Abstract][Full Text] [Related]
8. Goos-Hänchen and Imbert-Fedorov shifts of a nondiffracting Bessel beam. Aiello A; Woerdman JP Opt Lett; 2011 Feb; 36(4):543-5. PubMed ID: 21326450 [TBL] [Abstract][Full Text] [Related]
9. Goos-Hänchen and Imbert-Fedorov shifts on hyperbolic crystals. Wang XG; Zhang YQ; Fu SF; Zhou S; Wang XZ Opt Express; 2020 Aug; 28(17):25048-25059. PubMed ID: 32907035 [TBL] [Abstract][Full Text] [Related]
11. Goos-Hänchen and Imbert-Fedorov shifts at gradient metasurfaces. Kong Q; Shi HY; Shi JL; Chen X Opt Express; 2019 Apr; 27(9):11902-11913. PubMed ID: 31052739 [TBL] [Abstract][Full Text] [Related]
13. Behavior of obliquely incident vector Bessel beams at planar interfaces. Salem MA; Bağcı H J Opt Soc Am A Opt Image Sci Vis; 2013 Jun; 30(6):1172-9. PubMed ID: 24323104 [TBL] [Abstract][Full Text] [Related]
14. Goos-Hänchen and Imbert-Fedorov shifts for Gaussian beams impinging on graphene-coated surfaces. Grosche S; Ornigotti M; Szameit A Opt Express; 2015 Nov; 23(23):30195-203. PubMed ID: 26698500 [TBL] [Abstract][Full Text] [Related]
15. Polarization beam splitting in a Glan-Taylor prism based on dual effects of both birefringence and Goos-Hanchen shift. Li D; Cai G; Song C; Weng C; Chen C; Zheng W; Zhang Y; Li K Heliyon; 2022 Nov; 8(11):e11754. PubMed ID: 36468144 [TBL] [Abstract][Full Text] [Related]
17. Goos-Hänchen and Imbert-Fedorov shifts for Airy beams. Ornigotti M Opt Lett; 2018 Mar; 43(6):1411-1414. PubMed ID: 29543248 [TBL] [Abstract][Full Text] [Related]
18. Beam shifts controlled by orbital angular momentum in a guided-surface plasmon resonance structure with a four-level atomic medium. Chen Y; Chen G; Luo M; Chang S; Gao S Opt Express; 2023 Jul; 31(15):25253-25266. PubMed ID: 37475335 [TBL] [Abstract][Full Text] [Related]
19. Goos-Hänchen-like shift of three-level matter wave incident on Raman beams. Duan Z; Hu L; Xu X; Liu C Opt Express; 2014 Jul; 22(15):17679-90. PubMed ID: 25089388 [TBL] [Abstract][Full Text] [Related]
20. Corrected theory for transmitted Goos-Hänchen and Imbert-Fedorov shifts. Chen Z; Zhu Y; Zhang X; Zhang H; Zhen W Opt Lett; 2024 Sep; 49(18):5200-5203. PubMed ID: 39270267 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]