These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
303 related articles for article (PubMed ID: 34663839)
1. Modelling infectious diseases with herd immunity in a randomly mixed population. Law KB; M Peariasamy K; Mohd Ibrahim H; Abdullah NH Sci Rep; 2021 Oct; 11(1):20574. PubMed ID: 34663839 [TBL] [Abstract][Full Text] [Related]
3. Herd immunity effect of the HPV vaccination program in Australia under different assumptions regarding natural immunity against re-infection. Korostil IA; Peters GW; Law MG; Regan DG Vaccine; 2013 Apr; 31(15):1931-6. PubMed ID: 23434388 [TBL] [Abstract][Full Text] [Related]
4. Inducing Herd Immunity against Seasonal Influenza in Long-Term Care Facilities through Employee Vaccination Coverage: A Transmission Dynamics Model. Wendelboe AM; Grafe C; McCumber M; Anderson MP Comput Math Methods Med; 2015; 2015():178247. PubMed ID: 26101542 [TBL] [Abstract][Full Text] [Related]
5. Bayesian Inference of State-Level COVID-19 Basic Reproduction Numbers across the United States. Mallela A; Neumann J; Miller EF; Chen Y; Posner RG; Lin YT; Hlavacek WS Viruses; 2022 Jan; 14(1):. PubMed ID: 35062361 [TBL] [Abstract][Full Text] [Related]
6. MODELING A MORBILLIVIRUS OUTBREAK IN HAWAIIAN MONK SEALS (NEOMONACHUS SCHAUINSLANDI) TO AID IN THE DESIGN OF MITIGATION PROGRAMS. Baker JD; Harting AL; Barbieri MM; Robinson SJ; Gulland FMD; Littnan CL J Wildl Dis; 2017 Oct; 53(4):736-748. PubMed ID: 28463627 [TBL] [Abstract][Full Text] [Related]
7. Epidemic thresholds in dynamic contact networks. Volz E; Meyers LA J R Soc Interface; 2009 Mar; 6(32):233-41. PubMed ID: 18664429 [TBL] [Abstract][Full Text] [Related]
8. Vaccination and herd immunity: what more do we know? Rashid H; Khandaker G; Booy R Curr Opin Infect Dis; 2012 Jun; 25(3):243-9. PubMed ID: 22561998 [TBL] [Abstract][Full Text] [Related]
9. Vaccination and herd immunity thresholds in heterogeneous populations. Elbasha EH; Gumel AB J Math Biol; 2021 Dec; 83(6-7):73. PubMed ID: 34878609 [TBL] [Abstract][Full Text] [Related]
10. Invasive meningococcal disease epidemiology and control measures: a framework for evaluation. Caro JJ; Möller J; Getsios D; Coudeville L; El-Hadi W; Chevat C; Nguyen VH; Caro I BMC Public Health; 2007 Jun; 7():130. PubMed ID: 17603880 [TBL] [Abstract][Full Text] [Related]
11. An elaboration of theory about preventing outbreaks in homogeneous populations to include heterogeneity or preferential mixing. Feng Z; Hill AN; Smith PJ; Glasser JW J Theor Biol; 2015 Dec; 386():177-87. PubMed ID: 26375548 [TBL] [Abstract][Full Text] [Related]
12. Understanding Herd Immunity. Metcalf CJE; Ferrari M; Graham AL; Grenfell BT Trends Immunol; 2015 Dec; 36(12):753-755. PubMed ID: 26683689 [TBL] [Abstract][Full Text] [Related]
13. The Impact of Contact Structure and Mixing on Control Measures and Disease-Induced Herd Immunity in Epidemic Models: A Mean-Field Model Perspective. Di Lauro F; Berthouze L; Dorey MD; Miller JC; Kiss IZ Bull Math Biol; 2021 Oct; 83(11):117. PubMed ID: 34654959 [TBL] [Abstract][Full Text] [Related]
14. The role of vaccination coverage, individual behaviors, and the public health response in the control of measles epidemics: an agent-based simulation for California. Liu F; Enanoria WT; Zipprich J; Blumberg S; Harriman K; Ackley SF; Wheaton WD; Allpress JL; Porco TC BMC Public Health; 2015 May; 15():447. PubMed ID: 25928152 [TBL] [Abstract][Full Text] [Related]
15. Modeling the impact of vaccination control strategies on a foot and mouth disease outbreak in the Central United States. McReynolds SW; Sanderson MW; Reeves A; Hill AE Prev Vet Med; 2014 Dec; 117(3-4):487-504. PubMed ID: 25457133 [TBL] [Abstract][Full Text] [Related]
16. Susceptible-infectious-recovered models revisited: from the individual level to the population level. Magal P; Ruan S Math Biosci; 2014 Apr; 250():26-40. PubMed ID: 24530806 [TBL] [Abstract][Full Text] [Related]
17. Global properties of SIR and SEIR epidemic models with multiple parallel infectious stages. Korobeinikov A Bull Math Biol; 2009 Jan; 71(1):75-83. PubMed ID: 18769976 [TBL] [Abstract][Full Text] [Related]
18. The estimation of the basic reproduction number for infectious diseases. Dietz K Stat Methods Med Res; 1993; 2(1):23-41. PubMed ID: 8261248 [TBL] [Abstract][Full Text] [Related]
19. When and why direct transmission models can be used for environmentally persistent pathogens. Benson L; Davidson RS; Green DM; Hoyle A; Hutchings MR; Marion G PLoS Comput Biol; 2021 Dec; 17(12):e1009652. PubMed ID: 34851954 [TBL] [Abstract][Full Text] [Related]
20. Modeling the transmission dynamics of foot and mouth disease in Amhara region, Ethiopia. Belayneh N; Molla W; Mesfine M; Jemberu WT Prev Vet Med; 2020 Aug; 181():104673. PubMed ID: 31005346 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]