BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 34663839)

  • 1. Modelling infectious diseases with herd immunity in a randomly mixed population.
    Law KB; M Peariasamy K; Mohd Ibrahim H; Abdullah NH
    Sci Rep; 2021 Oct; 11(1):20574. PubMed ID: 34663839
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Factors affecting transmission of contagious diseases].
    Lounamo K; Tuuminen T; Kotilainen H
    Duodecim; 2014; 130(8):793-9. PubMed ID: 24822329
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Herd immunity effect of the HPV vaccination program in Australia under different assumptions regarding natural immunity against re-infection.
    Korostil IA; Peters GW; Law MG; Regan DG
    Vaccine; 2013 Apr; 31(15):1931-6. PubMed ID: 23434388
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inducing Herd Immunity against Seasonal Influenza in Long-Term Care Facilities through Employee Vaccination Coverage: A Transmission Dynamics Model.
    Wendelboe AM; Grafe C; McCumber M; Anderson MP
    Comput Math Methods Med; 2015; 2015():178247. PubMed ID: 26101542
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bayesian Inference of State-Level COVID-19 Basic Reproduction Numbers across the United States.
    Mallela A; Neumann J; Miller EF; Chen Y; Posner RG; Lin YT; Hlavacek WS
    Viruses; 2022 Jan; 14(1):. PubMed ID: 35062361
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MODELING A MORBILLIVIRUS OUTBREAK IN HAWAIIAN MONK SEALS (NEOMONACHUS SCHAUINSLANDI) TO AID IN THE DESIGN OF MITIGATION PROGRAMS.
    Baker JD; Harting AL; Barbieri MM; Robinson SJ; Gulland FMD; Littnan CL
    J Wildl Dis; 2017 Oct; 53(4):736-748. PubMed ID: 28463627
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Epidemic thresholds in dynamic contact networks.
    Volz E; Meyers LA
    J R Soc Interface; 2009 Mar; 6(32):233-41. PubMed ID: 18664429
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vaccination and herd immunity: what more do we know?
    Rashid H; Khandaker G; Booy R
    Curr Opin Infect Dis; 2012 Jun; 25(3):243-9. PubMed ID: 22561998
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vaccination and herd immunity thresholds in heterogeneous populations.
    Elbasha EH; Gumel AB
    J Math Biol; 2021 Dec; 83(6-7):73. PubMed ID: 34878609
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Invasive meningococcal disease epidemiology and control measures: a framework for evaluation.
    Caro JJ; Möller J; Getsios D; Coudeville L; El-Hadi W; Chevat C; Nguyen VH; Caro I
    BMC Public Health; 2007 Jun; 7():130. PubMed ID: 17603880
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An elaboration of theory about preventing outbreaks in homogeneous populations to include heterogeneity or preferential mixing.
    Feng Z; Hill AN; Smith PJ; Glasser JW
    J Theor Biol; 2015 Dec; 386():177-87. PubMed ID: 26375548
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Understanding Herd Immunity.
    Metcalf CJE; Ferrari M; Graham AL; Grenfell BT
    Trends Immunol; 2015 Dec; 36(12):753-755. PubMed ID: 26683689
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Impact of Contact Structure and Mixing on Control Measures and Disease-Induced Herd Immunity in Epidemic Models: A Mean-Field Model Perspective.
    Di Lauro F; Berthouze L; Dorey MD; Miller JC; Kiss IZ
    Bull Math Biol; 2021 Oct; 83(11):117. PubMed ID: 34654959
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of vaccination coverage, individual behaviors, and the public health response in the control of measles epidemics: an agent-based simulation for California.
    Liu F; Enanoria WT; Zipprich J; Blumberg S; Harriman K; Ackley SF; Wheaton WD; Allpress JL; Porco TC
    BMC Public Health; 2015 May; 15():447. PubMed ID: 25928152
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling the impact of vaccination control strategies on a foot and mouth disease outbreak in the Central United States.
    McReynolds SW; Sanderson MW; Reeves A; Hill AE
    Prev Vet Med; 2014 Dec; 117(3-4):487-504. PubMed ID: 25457133
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Susceptible-infectious-recovered models revisited: from the individual level to the population level.
    Magal P; Ruan S
    Math Biosci; 2014 Apr; 250():26-40. PubMed ID: 24530806
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Global properties of SIR and SEIR epidemic models with multiple parallel infectious stages.
    Korobeinikov A
    Bull Math Biol; 2009 Jan; 71(1):75-83. PubMed ID: 18769976
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The estimation of the basic reproduction number for infectious diseases.
    Dietz K
    Stat Methods Med Res; 1993; 2(1):23-41. PubMed ID: 8261248
    [TBL] [Abstract][Full Text] [Related]  

  • 19. When and why direct transmission models can be used for environmentally persistent pathogens.
    Benson L; Davidson RS; Green DM; Hoyle A; Hutchings MR; Marion G
    PLoS Comput Biol; 2021 Dec; 17(12):e1009652. PubMed ID: 34851954
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling the transmission dynamics of foot and mouth disease in Amhara region, Ethiopia.
    Belayneh N; Molla W; Mesfine M; Jemberu WT
    Prev Vet Med; 2020 Aug; 181():104673. PubMed ID: 31005346
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.