These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 34663872)
1. Effectiveness of using representative subsets of global climate models in future crop yield projections. Qian B; Jing Q; Cannon AJ; Smith W; Grant B; Semenov MA; Xu YP; Ma D Sci Rep; 2021 Oct; 11(1):20565. PubMed ID: 34663872 [TBL] [Abstract][Full Text] [Related]
2. Adverse weather conditions for UK wheat production under climate change. Harkness C; Semenov MA; Areal F; Senapati N; Trnka M; Balek J; Bishop J Agric For Meteorol; 2020 Mar; 282-283():107862. PubMed ID: 32184532 [TBL] [Abstract][Full Text] [Related]
3. Sources of uncertainty for wheat yield projections under future climate are site-specific. Wang B; Feng P; Liu L; O'Leary GJ; Macadam I; Waters C; Asseng S; Cowie A; Jiang T; Xiao D; Ruan H; He J; Yu Q Nat Food; 2020 Nov; 1(11):720-728. PubMed ID: 37128032 [TBL] [Abstract][Full Text] [Related]
4. Uncertainty in hydrological analysis of climate change: multi-parameter vs. multi-GCM ensemble predictions. Her Y; Yoo SH; Cho J; Hwang S; Jeong J; Seong C Sci Rep; 2019 Mar; 9(1):4974. PubMed ID: 30899064 [TBL] [Abstract][Full Text] [Related]
5. A dataset of CMIP6-based climate scenarios for climate change impact assessment in Great Britain. Semenov MA; Senapati N; Coleman K; Collins AL Data Brief; 2024 Aug; 55():110709. PubMed ID: 39076828 [TBL] [Abstract][Full Text] [Related]
6. Evaluating the skills of the CMIP5 global climate models using multicriteria decision-making analysis in Ethiopia. Tesfaye E; Abate B; Alemayehu T; Dile Y Heliyon; 2023 Oct; 9(10):e20320. PubMed ID: 37790964 [TBL] [Abstract][Full Text] [Related]
7. Climate-associated rice yield change in the Northeast China Plain: A simulation analysis based on CMIP5 multi-model ensemble projection. Zhang H; Zhou G; Liu L; Wang B; Xiao D; He L Sci Total Environ; 2019 May; 666():126-138. PubMed ID: 30798223 [TBL] [Abstract][Full Text] [Related]
8. From data to harvest: Leveraging ensemble machine learning for enhanced crop yield predictions across Canada amidst climate change. Mahdizadeh Gharakhanlou N; Perez L Sci Total Environ; 2024 Nov; 951():175764. PubMed ID: 39182775 [TBL] [Abstract][Full Text] [Related]
9. Simulation of Wheat Response to Future Climate Change Based on Coupled Model Inter-Comparison Project Phase 6 Multi-Model Ensemble Projections in the North China Plain. Bai H; Xiao D; Wang B; Liu L; Tang J Front Plant Sci; 2022; 13():829580. PubMed ID: 35185993 [TBL] [Abstract][Full Text] [Related]
10. [Impacts of future climate change on spring phenology stages of rubber tree in Hainan, China]. Li N; Bai R; Wu L; Li W; Chen M; Chen X; Fan CH; Yang GS Ying Yong Sheng Tai Xue Bao; 2020 Apr; 31(4):1241-1249. PubMed ID: 32530199 [TBL] [Abstract][Full Text] [Related]
11. Contribution of crop model structure, parameters and climate projections to uncertainty in climate change impact assessments. Tao F; Rötter RP; Palosuo T; Gregorio Hernández Díaz-Ambrona C; Mínguez MI; Semenov MA; Kersebaum KC; Nendel C; Specka X; Hoffmann H; Ewert F; Dambreville A; Martre P; Rodríguez L; Ruiz-Ramos M; Gaiser T; Höhn JG; Salo T; Ferrise R; Bindi M; Cammarano D; Schulman AH Glob Chang Biol; 2018 Mar; 24(3):1291-1307. PubMed ID: 29245185 [TBL] [Abstract][Full Text] [Related]
12. Evaluation and bias correction of global climate models in the CMIP5 over the Indian Ocean region. Mohan S; Bhaskaran PK Environ Monit Assess; 2020 Jan; 191(Suppl 3):806. PubMed ID: 31989295 [TBL] [Abstract][Full Text] [Related]
13. A novel approach for selecting extreme climate change scenarios for climate change impact studies. Farjad B; Gupta A; Sartipizadeh H; Cannon AJ Sci Total Environ; 2019 Aug; 678():476-485. PubMed ID: 31077926 [TBL] [Abstract][Full Text] [Related]
14. Global implications of regional grain production through virtual water trade. Masud MB; Wada Y; Goss G; Faramarzi M Sci Total Environ; 2019 Apr; 659():807-820. PubMed ID: 31096411 [TBL] [Abstract][Full Text] [Related]
15. Emulating Ocean Dynamic Sea Level by Two-Layer Pattern Scaling. Yuan J; Kopp RE J Adv Model Earth Syst; 2021 Mar; 13(3):e2020MS002323. PubMed ID: 35860209 [TBL] [Abstract][Full Text] [Related]
16. Climate change impact on wheat and maize growth in Ethiopia: A multi-model uncertainty analysis. Rettie FM; Gayler S; K D Weber T; Tesfaye K; Streck T PLoS One; 2022; 17(1):e0262951. PubMed ID: 35061854 [TBL] [Abstract][Full Text] [Related]
17. Implications of crop model ensemble size and composition for estimates of adaptation effects and agreement of recommendations. Rodríguez A; Ruiz-Ramos M; Palosuo T; Carter TR; Fronzek S; Lorite IJ; Ferrise R; Pirttioja N; Bindi M; Baranowski P; Buis S; Cammarano D; Chen Y; Dumont B; Ewert F; Gaiser T; Hlavinka P; Hoffmann H; Höhn JG; Jurecka F; Kersebaum KC; Krzyszczak J; Lana M; Mechiche-Alami A; Minet J; Montesino M; Nendel C; Porter JR; Ruget F; Semenov MA; Steinmetz Z; Stratonovitch P; Supit I; Tao F; Trnka M; de Wit A; Rötter RP Agric For Meteorol; 2019 Jan; 264():351-362. PubMed ID: 31007324 [TBL] [Abstract][Full Text] [Related]
18. Modeling the impact of crop rotation with legume on nitrous oxide emissions from rain-fed agricultural systems in Australia under alternative future climate scenarios. Ma Y; Schwenke G; Sun L; Liu L; Wang B; Yang B Sci Total Environ; 2018 Jul; 630():1544-1552. PubMed ID: 29554771 [TBL] [Abstract][Full Text] [Related]
19. Application of ensemble machine learning model in downscaling and projecting climate variables over different climate regions in Iran. Asadollah SBHS; Sharafati A; Shahid S Environ Sci Pollut Res Int; 2022 Mar; 29(12):17260-17279. PubMed ID: 34664165 [TBL] [Abstract][Full Text] [Related]
20. Modelling the impacts of climate change on faba bean ( Bogale GA; Maja MM; Gebreyohannes GH Heliyon; 2021 Oct; 7(10):e08176. PubMed ID: 34712857 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]