These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 34663895)
1. Substitutional synthesis of sub-nanometer InGaN/GaN quantum wells with high indium content. Vasileiadis IG; Lymperakis L; Adikimenakis A; Gkotinakos A; Devulapalli V; Liebscher CH; Androulidaki M; Hübner R; Karakostas T; Georgakilas A; Komninou P; Dimakis E; Dimitrakopulos GP Sci Rep; 2021 Oct; 11(1):20606. PubMed ID: 34663895 [TBL] [Abstract][Full Text] [Related]
2. The atomic structure of polar and non-polar InGaN quantum wells and the green gap problem. Humphreys CJ; Griffiths JT; Tang F; Oehler F; Findlay SD; Zheng C; Etheridge J; Martin TL; Bagot PAJ; Moody MP; Sutherland D; Dawson P; Schulz S; Zhang S; Fu WY; Zhu T; Kappers MJ; Oliver RA Ultramicroscopy; 2017 May; 176():93-98. PubMed ID: 28196629 [TBL] [Abstract][Full Text] [Related]
3. Dependencies of the emission behavior and quantum well structure of a regularly-patterned, InGaN/GaN quantum-well nanorod array on growth condition. Liao CH; Tu CG; Chang WM; Su CY; Shih PY; Chen HT; Yao YF; Hsieh C; Chen HS; Lin CH; Yu CK; Kiang YW; Yang CC Opt Express; 2014 Jul; 22(14):17303-19. PubMed ID: 25090544 [TBL] [Abstract][Full Text] [Related]
4. Role of Underlayer for Efficient Core-Shell InGaN QWs Grown on Kapoor A; Finot S; Grenier V; Robin E; Bougerol C; Bleuse J; Jacopin G; Eymery J; Durand C ACS Appl Mater Interfaces; 2020 Apr; 12(16):19092-19101. PubMed ID: 32208628 [TBL] [Abstract][Full Text] [Related]
5. The microstructure, local indium composition and photoluminescence in green-emitting InGaN/GaN quantum wells. Chery N; Ngo TH; Chauvat MP; Damilano B; Courville A; DE Mierry P; Grieb T; Mehrtens T; Krause FF; Müller-Caspary K; Schowalter M; Gil B; Rosenauer A; Ruterana P J Microsc; 2017 Dec; 268(3):305-312. PubMed ID: 29023712 [TBL] [Abstract][Full Text] [Related]
6. Role of Metal Vacancies in the Mechanism of Thermal Degradation of InGaN Quantum Wells. Smalc-Koziorowska J; Grzanka E; Lachowski A; Hrytsak R; Grabowski M; Grzanka S; Kret S; Czernecki R; Turski H; Marona L; Markurt T; Schulz T; Albrecht M; Leszczynski M ACS Appl Mater Interfaces; 2021 Feb; 13(6):7476-7484. PubMed ID: 33529520 [TBL] [Abstract][Full Text] [Related]
7. Geometry and composition comparisons between c-plane disc-like and m-plane core-shell InGaN/GaN quantum wells in a nitride nanorod. Liao CH; Chang WM; Chen HS; Chen CY; Yao YF; Chen HT; Su CY; Ting SY; Kiang YW; Yang CC Opt Express; 2012 Jul; 20(14):15859-71. PubMed ID: 22772276 [TBL] [Abstract][Full Text] [Related]
8. Directly correlated microscopy of trench defects in InGaN quantum wells. O'Hanlon TJ; Massabuau FC; Bao A; Kappers MJ; Oliver RA Ultramicroscopy; 2021 Dec; 231():113255. PubMed ID: 33762123 [TBL] [Abstract][Full Text] [Related]
9. Effect of same-temperature GaN cap layer on the InGaN/GaN multiquantum well of green light-emitting diode on silicon substrate. Zheng C; Wang L; Mo C; Fang W; Jiang F ScientificWorldJournal; 2013; 2013():538297. PubMed ID: 24369453 [TBL] [Abstract][Full Text] [Related]
10. Determination of the internal piezoelectric potentials and indium concentration in InGaN based quantum wells grown on relaxed InGaN pseudo-substrates by off-axis electron holography. Cooper D; Boureau V; Even A; Barbier F; Dussaigne A Nanotechnology; 2020 Nov; 31(47):475705. PubMed ID: 32764191 [TBL] [Abstract][Full Text] [Related]
11. Single-Exciton Photoluminescence in a GaN Monolayer inside an AlN Nanocolumn. Evropeitsev E; Nechaev D; Jmerik V; Zadiranov Y; Kulagina M; Troshkov S; Guseva Y; Berezina D; Shubina T; Toropov A Nanomaterials (Basel); 2023 Jul; 13(14):. PubMed ID: 37513064 [TBL] [Abstract][Full Text] [Related]
13. Improving the internal quantum efficiency of QD/QW hybrid structures by increasing the GaN barrier thickness. Jia Z; Hao X; Lu T; Dong H; Jia Z; Ma S; Liang J; Jia W; Xu B RSC Adv; 2020 Nov; 10(68):41443-41452. PubMed ID: 35516542 [TBL] [Abstract][Full Text] [Related]
14. Effects of overgrown p-layer on the emission characteristics of the InGaN/GaN quantum wells in a high-indium light-emitting diode. Chen CY; Hsieh C; Liao CH; Chung WL; Chen HT; Cao W; Chang WM; Chen HS; Yao YF; Ting SY; Kiang YW; Yang CC; Hu X Opt Express; 2012 May; 20(10):11321-35. PubMed ID: 22565753 [TBL] [Abstract][Full Text] [Related]
15. Three-dimensional mapping of quantum wells in a GaN/InGaN core-shell nanowire light-emitting diode array. Riley JR; Padalkar S; Li Q; Lu P; Koleske DD; Wierer JJ; Wang GT; Lauhon LJ Nano Lett; 2013 Sep; 13(9):4317-25. PubMed ID: 23919559 [TBL] [Abstract][Full Text] [Related]
16. Graphene-Nanorod Enhanced Quasi-Van Der Waals Epitaxy for High Indium Composition Nitride Films. Zhang S; Liu B; Ren F; Yin Y; Wang Y; Chen Z; Jiang B; Liu B; Liu Z; Sun J; Liang M; Yan J; Wei T; Yi X; Wang J; Li J; Gao P; Liu Z; Liu Z Small; 2021 May; 17(19):e2100098. PubMed ID: 33788402 [TBL] [Abstract][Full Text] [Related]
17. Fabrication of surface metal nanoparticles and their induced surface plasmon coupling with subsurface InGaN/GaN quantum wells. Huang CW; Tseng HY; Chen CY; Liao CH; Hsieh C; Chen KY; Lin HY; Chen HS; Jung YL; Kiang YW; Yang CC Nanotechnology; 2011 Nov; 22(47):475201. PubMed ID: 22049151 [TBL] [Abstract][Full Text] [Related]