These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
106 related articles for article (PubMed ID: 34664050)
1. Enhancing catalytic activity of pyridines Richard NA; Charlton GD; Dyker CA Org Biomol Chem; 2021 Nov; 19(42):9167-9171. PubMed ID: 34664050 [TBL] [Abstract][Full Text] [Related]
2. Iminophosphorano-Substituted Bispyridinylidenes: Redox Potentials and Substituent Constants from Tolman Electronic Parameters. Richard NA; Khor CK; Hetherington SM; Mills SL; Decken A; Dyker CA Chemistry; 2020 Dec; 26(72):17371-17375. PubMed ID: 33022780 [TBL] [Abstract][Full Text] [Related]
3. Powerful Bispyridinylidene Organic Reducing Agents with Iminophosphorano π-Donor Substituents. Hanson SS; Richard NA; Dyker CA Chemistry; 2015 May; 21(22):8052-5. PubMed ID: 25877958 [TBL] [Abstract][Full Text] [Related]
4. An ab Initio Study of the Effect of Substituents on the n → π* Interactions between 7-Azaindole and 2,6-Difluorosubstituted Pyridines. Singh SK; Das A; Breton GW J Phys Chem A; 2016 Aug; 120(31):6258-69. PubMed ID: 27429098 [TBL] [Abstract][Full Text] [Related]
5. Bis(Iminophosphorano)-Substituted Pyridinium Ions and their Corresponding Bispyridinylidene Organic Electron Donors. Frenette BL; Arsenault N; Walker SL; Decken A; Dyker CA Chemistry; 2021 Jun; 27(33):8528-8536. PubMed ID: 33834560 [TBL] [Abstract][Full Text] [Related]
6. The Stronger the Better: Donor Substituents Push Catalytic Activity of Molecular Chromium Olefin Polymerization Catalysts. Hansen HB; Wadepohl H; Enders M Chemistry; 2021 Aug; 27(43):11084-11093. PubMed ID: 34018643 [TBL] [Abstract][Full Text] [Related]
7. Predicting the Strength of Anion-π Interactions of Substituted Benzenes: the Development of Anion-π Binding Substituent Constants. Bagwill C; Anderson C; Sullivan E; Manohara V; Murthy P; Kirkpatrick CC; Stalcup A; Lewis M J Phys Chem A; 2016 Nov; 120(46):9235-9243. PubMed ID: 27779403 [TBL] [Abstract][Full Text] [Related]
8. A Theoretical Study of the Relationship between the Electrophilicity ω Index and Hammett Constant σ Ben El Ayouchia H; Anane H; El Idrissi Moubtassim ML; Domingo LR; Julve M; Stiriba SE Molecules; 2016 Oct; 21(11):. PubMed ID: 27801811 [TBL] [Abstract][Full Text] [Related]
9. In-silico analysis of substituent effect on the static first order hyperpolarizability of electron donating mono substituted Chalcone derivatives. Nair LCS; Balachandran S; Arul Dhas D; Hubert Joe I J Mol Model; 2018 May; 24(6):126. PubMed ID: 29728872 [TBL] [Abstract][Full Text] [Related]
10. Pushing the limits of neutral organic electron donors: a tetra(iminophosphorano)-substituted bispyridinylidene. Hanson SS; Doni E; Traboulsee KT; Coulthard G; Murphy JA; Dyker CA Angew Chem Int Ed Engl; 2015 Sep; 54(38):11236-9. PubMed ID: 26213345 [TBL] [Abstract][Full Text] [Related]
11. Nonlinear Hammett plots in pyridinolysis of 2,4-dinitrophenyl X-substituted benzoates: change in RDS versus resonance contribution. Um IH; Im LR; Kim EH; Shin JH Org Biomol Chem; 2010 Aug; 8(16):3801-6. PubMed ID: 20585674 [TBL] [Abstract][Full Text] [Related]
12. Correlation of substituted aromatic β-diketones' characteristic protons chemical shifts with Hammett substituent constants. Zawadiak J; Mrzyczek M Magn Reson Chem; 2013 Nov; 51(11):689-94. PubMed ID: 24038424 [TBL] [Abstract][Full Text] [Related]
14. Unusual pi-donating effects of pi-accepting substituents on the stabilities of benzylic cations: a theoretical study. Kim CK; Han IS; Ryu WS; Lee HW; Lee BS; Kim CK J Phys Chem A; 2006 Feb; 110(7):2500-4. PubMed ID: 16480310 [TBL] [Abstract][Full Text] [Related]
15. Critical Hammett Electron-Donating Ability of Substituent Groups for Efficient Water Oxidation Catalysis by Mononuclear Ruthenium Aquo Complexes. Watabe S; Tanahashi Y; Hirahara M; Yamazaki H; Takahashi K; Mohamed EA; Tsubonouchi Y; Zahran ZN; Saito K; Yui T; Yagi M Inorg Chem; 2019 Oct; 58(19):12716-12723. PubMed ID: 31549813 [TBL] [Abstract][Full Text] [Related]
16. Computational Analysis of Electron Transfer Kinetics for CO Kron KJ; Gomez SJ; Mao Y; Cave RJ; Mallikarjun Sharada S J Phys Chem A; 2020 Jul; 124(26):5359-5368. PubMed ID: 32491858 [TBL] [Abstract][Full Text] [Related]
17. Electronic excited state redox properties for BODIPY dyes predicted from Hammett constants: estimating the driving force of photoinduced electron transfer. Lincoln R; Greene LE; Krumova K; Ding Z; Cosa G J Phys Chem A; 2014 Nov; 118(45):10622-30. PubMed ID: 25066755 [TBL] [Abstract][Full Text] [Related]
18. Correlation between Hammett substituent constants and directly calculated pi-conjugation strength. Fernández I; Frenking G J Org Chem; 2006 Mar; 71(6):2251-6. PubMed ID: 16526770 [TBL] [Abstract][Full Text] [Related]
19. How do electron donating substituents affect the electronic structure, molecular topology, vibrational properties and intra- and intermolecular interactions of polyhalogenated pyridines? Benassi E; Vaganova T; Malykhin E; Fan H Phys Chem Chem Phys; 2022 Feb; 24(6):4002-4021. PubMed ID: 35103258 [TBL] [Abstract][Full Text] [Related]
20. 17O NMR studies of ortho-substituent effects in substituted phenyl tosylates. Nummert V; Mäemets V; Piirsalu M; Koppel IA Magn Reson Chem; 2012 Oct; 50(10):696-704. PubMed ID: 22936629 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]