These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 34664281)

  • 21. Acclimation of light and dark respiration to experimental and seasonal warming are mediated by changes in leaf nitrogen in Eucalyptus globulus.
    Crous KY; Wallin G; Atkin OK; Uddling J; Af Ekenstam A
    Tree Physiol; 2017 Aug; 37(8):1069-1083. PubMed ID: 28541536
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The acclimation of leaf photosynthesis of wheat and rice to seasonal temperature changes in T-FACE environments.
    Cai C; Li G; Di L; Ding Y; Fu L; Guo X; Struik PC; Pan G; Li H; Chen W; Luo W; Yin X
    Glob Chang Biol; 2020 Feb; 26(2):539-556. PubMed ID: 31505097
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Convergent acclimation of leaf photosynthesis and respiration to prevailing ambient temperatures under current and warmer climates in Eucalyptus tereticornis.
    Aspinwall MJ; Drake JE; Campany C; Vårhammar A; Ghannoum O; Tissue DT; Reich PB; Tjoelker MG
    New Phytol; 2016 Oct; 212(2):354-67. PubMed ID: 27284963
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Acclimation of leaf photosynthesis and respiration to warming in field-grown wheat.
    Coast O; Posch BC; Bramley H; Gaju O; Richards RA; Lu M; Ruan YL; Trethowan R; Atkin OK
    Plant Cell Environ; 2021 Jul; 44(7):2331-2346. PubMed ID: 33283881
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Canopy warming caused photosynthetic acclimation and reduced seed yield in maize grown at ambient and elevated [CO2 ].
    Ruiz-Vera UM; Siebers MH; Drag DW; Ort DR; Bernacchi CJ
    Glob Chang Biol; 2015 Nov; 21(11):4237-49. PubMed ID: 26119211
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Response of respiration of soybean leaves grown at ambient and elevated carbon dioxide concentrations to day-to-day variation in light and temperature under field conditions.
    Bunce JA
    Ann Bot; 2005 May; 95(6):1059-66. PubMed ID: 15781437
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Leaf chlorophyll content is the crucial factor for the temporal and spatial variation of global plants leaf maximum carboxylation rate.
    Wang X; Shi J
    Sci Total Environ; 2024 Jun; 927():172280. PubMed ID: 38593883
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Beyond greenness: Detecting temporal changes in photosynthetic capacity with hyperspectral reflectance data.
    Barnes ML; Breshears DD; Law DJ; van Leeuwen WJD; Monson RK; Fojtik AC; Barron-Gafford GA; Moore DJP
    PLoS One; 2017; 12(12):e0189539. PubMed ID: 29281709
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The influence of temperature on within-canopy acclimation and variation in leaf photosynthesis: spatial acclimation to microclimate gradients among climatically divergent Acer rubrum L. genotypes.
    Bauerle WL; Bowden JD; Wang GG
    J Exp Bot; 2007; 58(12):3285-98. PubMed ID: 17804430
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Does physiological acclimation to climate warming stabilize the ratio of canopy respiration to photosynthesis?
    Drake JE; Tjoelker MG; Aspinwall MJ; Reich PB; Barton CV; Medlyn BE; Duursma RA
    New Phytol; 2016 Aug; 211(3):850-63. PubMed ID: 27122489
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Heat waves imposed during early pod development in soybean (Glycine max) cause significant yield loss despite a rapid recovery from oxidative stress.
    Siebers MH; Yendrek CR; Drag D; Locke AM; Rios Acosta L; Leakey AD; Ainsworth EA; Bernacchi CJ; Ort DR
    Glob Chang Biol; 2015 Aug; 21(8):3114-25. PubMed ID: 25845935
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Quantifying high-temperature stress on soybean canopy photosynthesis: The unique role of sun-induced chlorophyll fluorescence.
    Kimm H; Guan K; Burroughs CH; Peng B; Ainsworth EA; Bernacchi CJ; Moore CE; Kumagai E; Yang X; Berry JA; Wu G
    Glob Chang Biol; 2021 Jun; 27(11):2403-2415. PubMed ID: 33844873
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Increasing atmospheric CO2 and canopy temperature induces anatomical and physiological changes in leaves of the C4 forage species Panicum maximum.
    Habermann E; San Martin JAB; Contin DR; Bossan VP; Barboza A; Braga MR; Groppo M; Martinez CA
    PLoS One; 2019; 14(2):e0212506. PubMed ID: 30779815
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reduced photosynthetic thermal acclimation capacity under elevated ozone in poplar (Populus tremula) saplings.
    Dai L; Xu Y; Harmens H; Duan H; Feng Z; Hayes F; Sharps K; Radbourne A; Tarvainen L
    Glob Chang Biol; 2021 May; 27(10):2159-2173. PubMed ID: 33609321
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Leaf chlorophyll content as a proxy for leaf photosynthetic capacity.
    Croft H; Chen JM; Luo X; Bartlett P; Chen B; Staebler RM
    Glob Chang Biol; 2017 Sep; 23(9):3513-3524. PubMed ID: 27976452
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Acclimation and adaptation components of the temperature dependence of plant photosynthesis at the global scale.
    Kumarathunge DP; Medlyn BE; Drake JE; Tjoelker MG; Aspinwall MJ; Battaglia M; Cano FJ; Carter KR; Cavaleri MA; Cernusak LA; Chambers JQ; Crous KY; De Kauwe MG; Dillaway DN; Dreyer E; Ellsworth DS; Ghannoum O; Han Q; Hikosaka K; Jensen AM; Kelly JWG; Kruger EL; Mercado LM; Onoda Y; Reich PB; Rogers A; Slot M; Smith NG; Tarvainen L; Tissue DT; Togashi HF; Tribuzy ES; Uddling J; Vårhammar A; Wallin G; Warren JM; Way DA
    New Phytol; 2019 Apr; 222(2):768-784. PubMed ID: 30597597
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A leaf gas exchange model that accounts for intra-canopy variability by considering leaf nitrogen content and local acclimation to radiation in grapevine (Vitis vinifera L.).
    Prieto JA; Louarn G; Perez Peña J; Ojeda H; Simonneau T; Lebon E
    Plant Cell Environ; 2012 Jul; 35(7):1313-28. PubMed ID: 22329397
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Vertical and seasonal variations in temperature responses of leaf respiration in a Chamaecyparis obtusa canopy.
    Araki MG; Gyokusen K; Kajimoto T
    Tree Physiol; 2017 Oct; 37(10):1269-1284. PubMed ID: 28338803
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of seasonal change and experimental warming on the temperature dependence of photosynthesis in the canopy leaves of Quercus serrata.
    Yamaguchi DP; Nakaji T; Hiura T; Hikosaka K
    Tree Physiol; 2016 Oct; 36(10):1283-1295. PubMed ID: 27107017
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Estimating photosynthetic traits from reflectance spectra: A synthesis of spectral indices, numerical inversion, and partial least square regression.
    Fu P; Meacham-Hensold K; Guan K; Wu J; Bernacchi C
    Plant Cell Environ; 2020 May; 43(5):1241-1258. PubMed ID: 31922609
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.