These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 34664748)

  • 1. Programmable Zwitterionic Droplets as Biomolecular Sorters and Model of Membraneless Organelles.
    Capasso Palmiero U; Paganini C; Kopp MRG; Linsenmeier M; Küffner AM; Arosio P
    Adv Mater; 2022 Jan; 34(4):e2104837. PubMed ID: 34664748
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-Assembling Polypeptides in Complex Coacervation.
    Sathyavageeswaran A; Bonesso Sabadini J; Perry SL
    Acc Chem Res; 2024 Feb; 57(3):386-398. PubMed ID: 38252962
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Programmable and Chemically Fueled DNA Coacervates by Transient Liquid-Liquid Phase Separation.
    Deng J; Walther A
    Chem; 2020 Dec; 6(12):3329-3343. PubMed ID: 35252623
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein conformation and biomolecular condensates.
    Vazquez DS; Toledo PL; Gianotti AR; Ermácora MR
    Curr Res Struct Biol; 2022; 4():285-307. PubMed ID: 36164646
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of biomolecular condensates and protein phase separation with microfluidic technology.
    Linsenmeier M; Kopp MRG; Stavrakis S; de Mello A; Arosio P
    Biochim Biophys Acta Mol Cell Res; 2021 Jan; 1868(1):118823. PubMed ID: 32800925
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biological colloids: Unique properties of membraneless organelles in the cell.
    Bratek-Skicki A; Van Nerom M; Maes D; Tompa P
    Adv Colloid Interface Sci; 2022 Dec; 310():102777. PubMed ID: 36279601
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coacervate Droplets for Synthetic Cells.
    Lin Z; Beneyton T; Baret JC; Martin N
    Small Methods; 2023 Dec; 7(12):e2300496. PubMed ID: 37462244
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-programmed enzyme phase separation and multiphase coacervate droplet organization.
    Karoui H; Seck MJ; Martin N
    Chem Sci; 2021 Jan; 12(8):2794-2802. PubMed ID: 34164043
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-Yield Separation of Extracellular Vesicles Using Programmable Zwitterionic Coacervates.
    Paganini C; Capasso Palmiero U; Picciotto S; Molinelli A; Porello I; Adamo G; Manno M; Bongiovanni A; Arosio P
    Small; 2023 Jan; 19(1):e2204736. PubMed ID: 36367966
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photoswitchable Molecular Communication between Programmable DNA-Based Artificial Membraneless Organelles.
    Zhao QH; Cao FH; Luo ZH; Huck WTS; Deng NN
    Angew Chem Int Ed Engl; 2022 Mar; 61(14):e202117500. PubMed ID: 35090078
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent advances in design and application of synthetic membraneless organelles.
    Wan L; Zhu Y; Zhang W; Mu W
    Biotechnol Adv; 2024; 73():108355. PubMed ID: 38588907
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthetic Membraneless Droplets for Synaptic-Like Clustering of Lipid Vesicles.
    Li Q; Song Q; Guo W; Cao Y; Cui X; Chen D; Shum HC
    Angew Chem Int Ed Engl; 2023 Nov; 62(45):e202313096. PubMed ID: 37728515
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomolecular Chemistry in Liquid Phase Separated Compartments.
    Nakashima KK; Vibhute MA; Spruijt E
    Front Mol Biosci; 2019; 6():21. PubMed ID: 31001538
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sequence effects on internal structure of droplets of associative polymers.
    Singh K; Rabin Y
    Biophys J; 2021 Apr; 120(7):1210-1218. PubMed ID: 32937111
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrogen Bonding-Driven Self-Coacervation of Nonionic Homopolymers for Stimuli-Triggered Therapeutic Release.
    Chowdhury P; Saha B; Bauri K; Sumerlin BS; De P
    J Am Chem Soc; 2024 Aug; 146(31):21664-21676. PubMed ID: 39058398
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phase-specific RNA accumulation and duplex thermodynamics in multiphase coacervate models for membraneless organelles.
    Choi S; Meyer MO; Bevilacqua PC; Keating CD
    Nat Chem; 2022 Oct; 14(10):1110-1117. PubMed ID: 35773489
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dipping contacts - a novel type of contact site at the interface between membraneless organelles and membranes.
    Hoffmann C; Milovanovic D
    J Cell Sci; 2023 Dec; 136(24):. PubMed ID: 38149872
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enzymatic control over coacervation.
    Nakashima KK; André AAM; Spruijt E
    Methods Enzymol; 2021; 646():353-389. PubMed ID: 33453932
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theories for Sequence-Dependent Phase Behaviors of Biomolecular Condensates.
    Lin YH; Forman-Kay JD; Chan HS
    Biochemistry; 2018 May; 57(17):2499-2508. PubMed ID: 29509422
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.