These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 34664990)

  • 41. Metalliferous Biosignatures for Deep Subsurface Microbial Activity.
    Parnell J; Brolly C; Spinks S; Bowden S
    Orig Life Evol Biosph; 2016 Mar; 46(1):107-18. PubMed ID: 26376912
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Stable isotopic compositions of carbonates from the Mesoproterozoic Bangemall Group, northwestern Australia.
    Buick R; Des Marais DJ; Knoll AH
    Chem Geol; 1995 Jun; 123(1-4):153-71. PubMed ID: 11540130
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A Spectral Comparison of Jarosites Using Techniques Relevant to the Robotic Exploration of Biosignatures on Mars.
    Loiselle L; McCraig MA; Dyar MD; Léveillé R; Shieh SR; Southam G
    Life (Basel); 2018 Dec; 8(4):. PubMed ID: 30563260
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Biosignatures Preserved in Carbonate Nodules from the Western Qaidam Basin, NW China: Implications for Life Detection on Mars.
    Chen Y; Sun Y; Liu L; Shen J; Qu Y; Pan Y; Lin W
    Astrobiology; 2023 Feb; 23(2):172-182. PubMed ID: 36577041
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The photochemical stability of carbonates on Mars.
    Quinn R; Zent AP; McKay CP
    Astrobiology; 2006 Aug; 6(4):581-91. PubMed ID: 16916284
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The Search for Hesperian Organic Matter on Mars: Pyrolysis Studies of Sediments Rich in Sulfur and Iron.
    Lewis JMT; Najorka J; Watson JS; Sephton MA
    Astrobiology; 2018 Apr; 18(4):454-464. PubMed ID: 29298093
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Coastal lithofacies and biofacies associated with syndepositional dolomitization and silicification (Draken Formation, Upper Riphean, Svalbard).
    Fairchild IJ; Knoll AH; Swett K
    Precambrian Res; 1991; 53():165-97. PubMed ID: 11538645
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Lithostratigraphic analysis of a new stromatolite-thrombolite reef from across the rise of atmospheric oxygen in the Paleoproterozoic Turee Creek Group, Western Australia.
    Barlow E; Van Kranendonk MJ; Yamaguchi KE; Ikehara M; Lepland A
    Geobiology; 2016 Jul; 14(4):317-43. PubMed ID: 26928741
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Spectral properties of Lake Superior banded iron formation: application to Martian hematite deposits.
    Fallacaro A; Calvin WM
    Astrobiology; 2006 Aug; 6(4):563-80. PubMed ID: 16916283
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Key scientific questions and key investigations from the first international conference on Martian phyllosilicates.
    Poulet F; Beaty DW; Bibring JP; Bish D; Bishop JL; Noe Dobrea E; Mustard JF; Petit S; Roach LH
    Astrobiology; 2009 Apr; 9(3):257-67. PubMed ID: 19400732
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Carbonate deposition during the late Proterozoic Era: an example from Spitsbergen.
    Knoll AH; Swett K
    Am J Sci; 1990; 290-A():104-32. PubMed ID: 11538689
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Connecting molecular biomarkers, mineralogical composition, and microbial diversity from Mars analog lava tubes.
    Palma V; González-Pimentel JL; Jimenez-Morillo NT; Sauro F; Gutiérrez-Patricio S; De la Rosa JM; Tomasi I; Massironi M; Onac BP; Tiago I; González-Pérez JA; Laiz L; Caldeira AT; Cubero B; Miller AZ
    Sci Total Environ; 2024 Feb; 913():169583. PubMed ID: 38154629
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Origin of carbonate-magnetite-sulfide assemblages in Martian meteorite ALH84001.
    Scott ER
    J Geophys Res; 1999 Feb; 104(E2):3803-13. PubMed ID: 11542931
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Life on Mars: Independent Genesis or Common Ancestor?
    Davila AF
    Astrobiology; 2021 Jul; 21(7):802-812. PubMed ID: 33848439
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The Characterization of Biosignatures in Caves Using an Instrument Suite.
    Uckert K; Chanover NJ; Getty S; Voelz DG; Brinckerhoff WB; McMillan N; Xiao X; Boston PJ; Li X; McAdam A; Glenar DA; Chavez A
    Astrobiology; 2017 Dec; 17(12):1203-1218. PubMed ID: 29227156
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Artificial Maturation of Iron- and Sulfur-Rich Mars Analogues: Implications for the Diagenetic Stability of Biopolymers and Their Detection with Pyrolysis-Gas Chromatography-Mass Spectrometry.
    Tan JSW; Royle SH; Sephton MA
    Astrobiology; 2021 Feb; 21(2):199-218. PubMed ID: 33226839
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Deciphering Biosignatures in Planetary Contexts.
    Chan MA; Hinman NW; Potter-McIntyre SL; Schubert KE; Gillams RJ; Awramik SM; Boston PJ; Bower DM; Des Marais DJ; Farmer JD; Jia TZ; King PL; Hazen RM; Léveillé RJ; Papineau D; Rempfert KR; Sánchez-Román M; Spear JR; Southam G; Stern JC; Cleaves HJ
    Astrobiology; 2019 Sep; 19(9):1075-1102. PubMed ID: 31335163
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The late Precambrian greening of the Earth.
    Knauth LP; Kennedy MJ
    Nature; 2009 Aug; 460(7256):728-32. PubMed ID: 19587681
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Biosignature Preservation Potential in Playa Evaporites: Impacts of Diagenesis and Implications for Mars Exploration.
    Shkolyar S; Farmer JD
    Astrobiology; 2018 Nov; 18(11):1460-1478. PubMed ID: 30124326
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Organic Records of Early Life on Mars: The Role of Iron, Burial, and Kinetics on Preservation.
    Tan J; Sephton MA
    Astrobiology; 2020 Jan; 20(1):53-72. PubMed ID: 31755737
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.