These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

489 related articles for article (PubMed ID: 3466511)

  • 1. Physiological studies of macromolecular transport across capillary walls. Studies on continuous capillaries in rat skeletal muscle.
    Haraldsson B
    Acta Physiol Scand Suppl; 1986; 553():1-40. PubMed ID: 3466511
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluid and protein fluxes across small and large pores in the microvasculature. Application of two-pore equations.
    Rippe B; Haraldsson B
    Acta Physiol Scand; 1987 Nov; 131(3):411-28. PubMed ID: 3321914
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transport of macromolecules across microvascular walls: the two-pore theory.
    Rippe B; Haraldsson B
    Physiol Rev; 1994 Jan; 74(1):163-219. PubMed ID: 8295933
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clinical implications of a three-pore model of peritoneal transport.
    Rippe B; Simonsen O; Stelin G
    Adv Perit Dial; 1991; 7():3-9. PubMed ID: 1680451
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Importance of molecular charge for the passage of endogenous macromolecules across continuous capillary walls, studied by serum clearance of lactate dehydrogenase (LDH) isoenzymes.
    Haraldsson B; Ekholm C; Rippe B
    Acta Physiol Scand; 1983 Jan; 117(1):123-30. PubMed ID: 6858700
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Restricted diffusion of CrEDTA and cyanocobalamine across the exchange vessels in rat hindquarters.
    Haraldsson B; Rippe B
    Acta Physiol Scand; 1986 Jul; 127(3):359-72. PubMed ID: 3092578
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A three-pathway pore model describes extensive transport data from Mammalian microvascular beds and frog microvessels.
    Wolf MB
    Microcirculation; 2002 Dec; 9(6):497-511. PubMed ID: 12483547
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in transcapillary exchange induced by perfusion fixation with glutaraldehyde, followed by measurements of capillary filtration coefficient, diffusion capacity and albumin clearance.
    Haraldsson B; Johansson BR
    Acta Physiol Scand; 1985 May; 124(1):99-106. PubMed ID: 3925722
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Capillary permeability and macromolecular exchange with special reference to structure of microvascular walls].
    Ohhashi T
    Nihon Rinsho; 2005 Jan; 63(1):19-25. PubMed ID: 15675312
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modulation of the blood-brain barrier permeability by plasma glycoprotein orosomucoid.
    Yuan W; Li G; Zeng M; Fu BM
    Microvasc Res; 2010 Jul; 80(1):148-57. PubMed ID: 20362593
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Capillary permeability in rat hindquarters as determined by estimations of capillary reflection coefficients.
    Rippe B; Haraldsson B
    Acta Physiol Scand; 1986 Jul; 127(3):289-303. PubMed ID: 3751629
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diffusional transport of albumin from interstitium to blood across small pores in the capillary walls of rat skeletal muscle.
    Haraldsson B
    Acta Physiol Scand; 1988 May; 133(1):63-71. PubMed ID: 3227905
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Restriction coefficients of low molecular weight solutes and macromolecules during peritoneal dialysis.
    Ho-dac-Pannekeet MM; Koopmans JG; Struijk DG; Krediet RT
    Adv Perit Dial; 1997; 13():72-6. PubMed ID: 9360654
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The peritoneal microcirculation in peritoneal dialysis.
    Rippe B; Rosengren BI; Venturoli D
    Microcirculation; 2001 Oct; 8(5):303-20. PubMed ID: 11687943
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The density of small tight junction pores varies among cell types and is increased by expression of claudin-2.
    Van Itallie CM; Holmes J; Bridges A; Gookin JL; Coccaro MR; Proctor W; Colegio OR; Anderson JM
    J Cell Sci; 2008 Feb; 121(Pt 3):298-305. PubMed ID: 18198187
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Equivalent pore modeling: vesicles and channels.
    Taylor AE; Granger DN
    Fed Proc; 1983 May; 42(8):2440-5. PubMed ID: 6840295
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An electrophysiological study of microvascular permeability and its modulation by chemical mediators.
    Olesen SP
    Acta Physiol Scand Suppl; 1989; 579():1-28. PubMed ID: 2543183
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Permeability of renal capillaries. III. Theoretical analysis of hydraulic conductivity, pore structure and electric properties.
    Ojteg G; Wolgast M
    Acta Physiol Scand; 1988 Aug; 133(4):459-68. PubMed ID: 3227932
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Similarity of permeabilities for Ficoll, pullulan, charge-modified albumin and native albumin across the rat peritoneal membrane.
    Asgeirsson D; Axelsson J; Rippe C; Rippe B
    Acta Physiol (Oxf); 2009 Aug; 196(4):427-33. PubMed ID: 19141139
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.