BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 34665388)

  • 1. Use of optically stimulated luminescence dosimeter and radiophotoliminescent glass dosimeter for dose measurement in dual-source dual-energy computed tomography.
    Hirosawa A; Matsubara K; Morioka Y; Kitagawa M; Chusin T; Takemura A
    Phys Eng Sci Med; 2021 Dec; 44(4):1311-1319. PubMed ID: 34665388
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energy dependence of a radiophotoluminescent glass dosimeter for HDR
    Hashimoto S; Nakajima Y; Kadoya N; Abe K; Karasawa K
    Med Phys; 2019 Feb; 46(2):964-972. PubMed ID: 30506576
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characteristics of an OSLD in the diagnostic energy range.
    Al-Senan RM; Hatab MR
    Med Phys; 2011 Jul; 38(7):4396-405. PubMed ID: 21859040
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selecting passive dosimetry technologies for measuring the external dose of terrestrial wildlife.
    Aramrun P; Beresford NA; Wood MD
    J Environ Radioact; 2018 Feb; 182():128-137. PubMed ID: 29227874
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Properties and usage of radiophotoluminescent glass dosimeters for computed tomography dosimetry].
    Hirosawa A; Matsubara K; Kondo H; Koshida K
    Nihon Hoshasen Gijutsu Gakkai Zasshi; 2015 Jan; 71(1):12-8. PubMed ID: 25672533
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monte Carlo study of the relationship between skin dose and optically stimulated luminescence dosimeter dose in Pd-103 permanent breast seed implant brachytherapy.
    Nich S; Kirkby C; Villarreal-Barajas JE
    Brachytherapy; 2019; 18(3):387-395. PubMed ID: 30792005
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measurement of surface dose in an MR-Linac with optically stimulated luminescence dosimeters for IMRT beam geometries.
    Lim-Reinders S; Keller BM; Sahgal A; Chugh B; Kim A
    Med Phys; 2020 Jul; 47(7):3133-3142. PubMed ID: 32302010
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of the nanoDot OSLD dosimeter in CT.
    Scarboro SB; Cody D; Alvarez P; Followill D; Court L; Stingo FC; Zhang D; McNitt-Gray M; Kry SF
    Med Phys; 2015 Apr; 42(4):1797-807. PubMed ID: 25832070
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dose-response dependencies of OSL dosimeters in conventional linacs and 1.5T MR-linacs: an experimental and Monte Carlo study.
    Episkopakis A; Margaroni V; Kanellopoulou S; Marinos N; Koutsouveli E; Karaiskos P; Pappas EP
    Phys Med Biol; 2023 Nov; 68(22):. PubMed ID: 37857285
    [No Abstract]   [Full Text] [Related]  

  • 10. Characterization of optically stimulated luminescent dosimeters, OSLDs, for clinical dosimetric measurements.
    Jursinic PA
    Med Phys; 2007 Dec; 34(12):4594-604. PubMed ID: 18196786
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Energy dependence and angular dependence of an optically stimulated luminescence dosimeter in the mammography energy range.
    Kawaguchi A; Matsunaga Y; Suzuki S; Chida K
    J Appl Clin Med Phys; 2017 Mar; 18(2):191-196. PubMed ID: 28300371
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Radiation dose measurements in a dental orthopantogram unit using indigenously developed optically stimulated luminescence dosimeters.
    Kumar P; Dutt Sharma S; Chandola RM; Mishra DR; Dhabekar B; Rawat NS; Kadam S; Agrawal S
    Luminescence; 2019 Jun; 34(4):444-449. PubMed ID: 31025441
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optically stimulated luminescent dosimeters stable response to dose after repeated bleaching.
    Jursinic PA
    Med Phys; 2020 Jul; 47(7):3191-3203. PubMed ID: 32297332
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Measurement of patient skin dose in interventional radiology using passive integrating dosimeter].
    Iida H; Noto K; Nakagawa H; Horii J; Chabatake M; Yamamoto T; Kobayashi I
    Nihon Hoshasen Gijutsu Gakkai Zasshi; 2006 Feb; 62(2):305-14. PubMed ID: 16520715
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development and implementation of a remote audit tool for high dose rate (HDR) Ir-192 brachytherapy using optically stimulated luminescence dosimetry.
    Casey KE; Alvarez P; Kry SF; Howell RM; Lawyer A; Followill D
    Med Phys; 2013 Nov; 40(11):112102. PubMed ID: 24320455
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of optically stimulated luminescence dosimeter for exit dose
    Ponmalar R; Manickam R; Saminathan S; Ganesh KM; Raman A; Godson HF
    J Cancer Res Ther; 2018; 14(6):1341-1349. PubMed ID: 30488854
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Technical note: High-dose and ultra-high dose rate (UHDR) evaluation of Al
    Liu K; Velasquez B; Schüler E
    Med Phys; 2024 Mar; 51(3):2311-2319. PubMed ID: 37991111
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Field-size correction factors of a radiophotoluminescent glass dosimeter for small-field and intensity-modulated radiation therapy beams.
    Hashimoto S; Fujita Y; Katayose T; Mizuno H; Saitoh H; Karasawa K
    Med Phys; 2018 Jan; 45(1):382-390. PubMed ID: 29131409
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dosimetric characterisation of the optically-stimulated luminescence dosimeter in cobalt-60 high dose rate brachytherapy system.
    Rejab M; Wong JHD; Jamalludin Z; Jong WL; Malik RA; Wan Ishak WZ; Ung NM
    Australas Phys Eng Sci Med; 2018 Jun; 41(2):475-485. PubMed ID: 29756166
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relative energy response of indigenously developed optically stimulated luminescence dosimeters Al
    Kumar P; Dhabekar B; Sharma SD; Mishra DR; Rawat NS; Kadam S; Chaudhari S; Chandola RM; Agrawal S
    Luminescence; 2020 Dec; 35(8):1217-1222. PubMed ID: 32515166
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.