BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 34665595)

  • 1. Phenoxazinone Synthase-like Activity of Rationally Designed Heme Enzymes Based on Myoglobin.
    Sun LJ; Yuan H; Xu JK; Luo J; Lang JJ; Wen GB; Tan X; Lin YW
    Biochemistry; 2023 Jan; 62(2):369-377. PubMed ID: 34665595
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rational design of artificial dye-decolorizing peroxidases using myoglobin by engineering Tyr/Trp in the heme center.
    Li LL; Yuan H; Liao F; He B; Gao SQ; Wen GB; Tan X; Lin YW
    Dalton Trans; 2017 Aug; 46(34):11230-11238. PubMed ID: 28795725
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An intramolecular disulfide bond designed in myoglobin fine-tunes both protein structure and peroxidase activity.
    Wu LB; Yuan H; Zhou H; Gao SQ; Nie CM; Tan X; Wen GB; Lin YW
    Arch Biochem Biophys; 2016 Jun; 600():47-55. PubMed ID: 27117233
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and Engineering of an Efficient Peroxidase Using Myoglobin for Dye Decolorization and Lignin Bioconversion.
    Guo WJ; Xu JK; Wu ST; Gao SQ; Wen GB; Tan X; Lin YW
    Int J Mol Sci; 2021 Dec; 23(1):. PubMed ID: 35008837
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How a novel tyrosine-heme cross-link fine-tunes the structure and functions of heme proteins: a direct comparitive study of L29H/F43Y myoglobin.
    Yan DJ; Yuan H; Li W; Xiang Y; He B; Nie CM; Wen GB; Lin YW; Tan X
    Dalton Trans; 2015 Nov; 44(43):18815-22. PubMed ID: 26458300
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unique Tyr-heme double cross-links in F43Y/T67R myoglobin: an artificial enzyme with a peroxidase activity comparable to that of native peroxidases.
    Liu C; Yuan H; Liao F; Wei CW; Du KJ; Gao SQ; Tan X; Lin YW
    Chem Commun (Camb); 2019 Jun; 55(46):6610-6613. PubMed ID: 31119219
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioinspired design of an artificial peroxidase: introducing key residues of native peroxidases into F43Y myoglobin with a Tyr-heme cross-link.
    Liao F; Xu JK; Luo J; Gao SQ; Wang XJ; Lin YW
    Dalton Trans; 2020 Apr; 49(16):5029-5033. PubMed ID: 32236202
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of engineered myoglobins for biosynthesis of clofazimine by integration with chemical synthesis.
    Tang S; Sun LJ; Pan AQ; Huang J; Wang H; Lin YW
    Org Biomol Chem; 2023 Dec; 21(48):9603-9609. PubMed ID: 38014756
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel tyrosine-heme C−O covalent linkage in F43Y myoglobin: a new post-translational modification of heme proteins.
    Yan DJ; Li W; Xiang Y; Wen GB; Lin YW; Tan X
    Chembiochem; 2015 Jan; 16(1):47-50. PubMed ID: 25392956
    [TBL] [Abstract][Full Text] [Related]  

  • 10. O
    Tang S; Pan AQ; Wang XJ; Gao SQ; Tan XS; Lin YW
    Molecules; 2022 Dec; 27(23):. PubMed ID: 36500571
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulating the Heme Active Site by Covalent Modifications: Two Case Studies of Myoglobin.
    Chen ZY; Yuan H; Wang H; Sun LJ; Yu L; Gao SQ; Tan X; Lin YW
    Chembiochem; 2024 Feb; 25(3):e202300678. PubMed ID: 38015421
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design of Heteronuclear Metalloenzymes.
    Bhagi-Damodaran A; Hosseinzadeh P; Mirts E; Reed J; Petrik ID; Lu Y
    Methods Enzymol; 2016; 580():501-37. PubMed ID: 27586347
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering globins for efficient biodegradation of malachite green: two case studies of myoglobin and neuroglobin.
    Liu J; Xu JK; Yuan H; Wang XJ; Gao SQ; Wen GB; Tan XS; Lin YW
    RSC Adv; 2022 Jun; 12(29):18654-18660. PubMed ID: 35873322
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional metalloenzymes based on myoglobin and neuroglobin that exploit covalent interactions.
    Lin YW
    J Inorg Biochem; 2024 Aug; 257():112595. PubMed ID: 38759262
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hemoproteins Reconstituted with Artificial Metal Complexes as Biohybrid Catalysts.
    Oohora K; Onoda A; Hayashi T
    Acc Chem Res; 2019 Apr; 52(4):945-954. PubMed ID: 30933477
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biotransformation of Lignin by an Artificial Heme Enzyme Designed in Myoglobin With a Covalently Linked Heme Group.
    Guo WJ; Xu JK; Liu JJ; Lang JJ; Gao SQ; Wen GB; Lin YW
    Front Bioeng Biotechnol; 2021; 9():664388. PubMed ID: 34136471
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of both the structure and function by a de novo designed disulfide bond: a case study of heme proteins in myoglobin.
    Yin LL; Yuan H; Du KJ; He B; Gao SQ; Wen GB; Tan X; Lin YW
    Chem Commun (Camb); 2018 Apr; 54(34):4356-4359. PubMed ID: 29645029
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rational design of a nitrite reductase based on myoglobin: a molecular modeling and dynamics simulation study.
    Lin YW; Nie CM; Liao LF
    J Mol Model; 2012 Sep; 18(9):4409-15. PubMed ID: 22588586
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Understanding and Modulating Metalloenzymes with Unnatural Amino Acids, Non-Native Metal Ions, and Non-Native Metallocofactors.
    Mirts EN; Bhagi-Damodaran A; Lu Y
    Acc Chem Res; 2019 Apr; 52(4):935-944. PubMed ID: 30912643
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Green and efficient biosynthesis of indigo from indole by engineered myoglobins.
    Liu C; Xu J; Gao SQ; He B; Wei CW; Wang XJ; Wang Z; Lin YW
    RSC Adv; 2018 Sep; 8(58):33325-33330. PubMed ID: 35548150
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.