BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 34665620)

  • 1. Far-Infrared Near-Field Optical Imaging and Kelvin Probe Force Microscopy of Laser-Crystallized and -Amorphized Phase Change Material Ge
    Barnett J; Wehmeier L; Heßler A; Lewin M; Pries J; Wuttig M; Klopf JM; Kehr SC; Eng LM; Taubner T
    Nano Lett; 2021 Nov; 21(21):9012-9020. PubMed ID: 34665620
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mapping Free-Carriers in Multijunction Silicon Nanowires Using Infrared Near-Field Optical Microscopy.
    Ritchie ET; Hill DJ; Mastin TM; Deguzman PC; Cahoon JF; Atkin JM
    Nano Lett; 2017 Nov; 17(11):6591-6597. PubMed ID: 29032679
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Towards phonon photonics: scattering-type near-field optical microscopy reveals phonon-enhanced near-field interaction.
    Hillenbrand R
    Ultramicroscopy; 2004 Aug; 100(3-4):421-7. PubMed ID: 15231334
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrated Tapping Mode Kelvin Probe Force Microscopy with Photoinduced Force Microscopy for Correlative Chemical and Surface Potential Mapping.
    Jakob DS; Li N; Zhou H; Xu XG
    Small; 2021 Sep; 17(37):e2102495. PubMed ID: 34310045
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical nanoimaging of laser-switched phase-change plasmonic infrared antennas.
    Chen Q; Lu D; Qin T; Luo X; Xu M; Li P
    Opt Lett; 2024 Feb; 49(4):1021-1024. PubMed ID: 38359232
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Peak Force Infrared-Kelvin Probe Force Microscopy.
    Jakob DS; Wang H; Zeng G; Otzen DE; Yan Y; Xu XG
    Angew Chem Int Ed Engl; 2020 Sep; 59(37):16083-16090. PubMed ID: 32463936
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tomographic and multimodal scattering-type scanning near-field optical microscopy with peak force tapping mode.
    Wang H; Wang L; Jakob DS; Xu XG
    Nat Commun; 2018 May; 9(1):2005. PubMed ID: 29784951
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrafast and nanoscale plasmonic phenomena in exfoliated graphene revealed by infrared pump-probe nanoscopy.
    Wagner M; Fei Z; McLeod AS; Rodin AS; Bao W; Iwinski EG; Zhao Z; Goldflam M; Liu M; Dominguez G; Thiemens M; Fogler MM; Castro Neto AH; Lau CN; Amarie S; Keilmann F; Basov DN
    Nano Lett; 2014 Feb; 14(2):894-900. PubMed ID: 24479682
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoscale infrared absorption spectroscopy of individual nanoparticles enabled by scattering-type near-field microscopy.
    Stiegler JM; Abate Y; Cvitkovic A; Romanyuk YE; Huber AJ; Leone SR; Hillenbrand R
    ACS Nano; 2011 Aug; 5(8):6494-9. PubMed ID: 21770439
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Observing optical plasmons on a single nanometer scale.
    Cohen M; Shavit R; Zalevsky Z
    Sci Rep; 2014 Feb; 4():4096. PubMed ID: 24556874
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoscale Optical Microscopy and Spectroscopy Using Near-Field Probes.
    Hermann RJ; Gordon MJ
    Annu Rev Chem Biomol Eng; 2018 Jun; 9():365-387. PubMed ID: 29596000
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical nanoscopy of transient states in condensed matter.
    Kuschewski F; Kehr SC; Green B; Bauer Ch; Gensch M; Eng LM
    Sci Rep; 2015 Jul; 5():12582. PubMed ID: 26215769
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Near-field infrared nanoscopic study of EUV- and e-beam-exposed hydrogen silsesquioxane photoresist.
    Kim J; Lee JK; Chae B; Ahn J; Lee S
    Nano Converg; 2022 Dec; 9(1):53. PubMed ID: 36459274
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Infrared spectroscopic near-field mapping of single nanotransistors.
    Huber AJ; Wittborn J; Hillenbrand R
    Nanotechnology; 2010 Jun; 21(23):235702. PubMed ID: 20463381
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Breaking the Time Barrier in Kelvin Probe Force Microscopy: Fast Free Force Reconstruction Using the G-Mode Platform.
    Collins L; Ahmadi M; Wu T; Hu B; Kalinin SV; Jesse S
    ACS Nano; 2017 Sep; 11(9):8717-8729. PubMed ID: 28780850
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative Measurement of Local Infrared Absorption and Dielectric Function with Tip-Enhanced Near-Field Microscopy.
    Govyadinov AA; Amenabar I; Huth F; Carney PS; Hillenbrand R
    J Phys Chem Lett; 2013 May; 4(9):1526-31. PubMed ID: 26282309
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modern Scattering-Type Scanning Near-Field Optical Microscopy for Advanced Material Research.
    Chen X; Hu D; Mescall R; You G; Basov DN; Dai Q; Liu M
    Adv Mater; 2019 Jun; 31(24):e1804774. PubMed ID: 30932221
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantification of electron accumulation at grain boundaries in perovskite polycrystalline films by correlative infrared-spectroscopic nanoimaging and Kelvin probe force microscopy.
    Qin TX; You EM; Zhang MX; Zheng P; Huang XF; Ding SY; Mao BW; Tian ZQ
    Light Sci Appl; 2021 Apr; 10(1):84. PubMed ID: 33859164
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Resolution enhancing using cantilevered tip-on-aperture silicon probe in scanning near-field optical microscopy.
    Chang WS; Bauerdick S; Jeong MS
    Ultramicroscopy; 2008 Sep; 108(10):1070-5. PubMed ID: 18579310
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Near-field microscopy and lithography of light-emitting polymers.
    Richards D; Cacialli F
    Philos Trans A Math Phys Eng Sci; 2004 Apr; 362(1817):771-86. PubMed ID: 15306493
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.