BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 34665735)

  • 1. Polarization-Dependent Plasmonic Nano-Tweezer as a Platform for On-Chip Trapping and Manipulation of Virus-Like Particles.
    Mokri K; Mozaffari MH; Farmani A
    IEEE Trans Nanobioscience; 2022 Apr; 21(2):226-231. PubMed ID: 34665735
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Utilization of plasmonic and photonic crystal nanostructures for enhanced micro- and nanoparticle manipulation.
    Simmons CS; Knouf EC; Tewari M; Lin LY
    J Vis Exp; 2011 Sep; (55):. PubMed ID: 21988841
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A numerical study on the closed packed array of gold discs as an efficient dual mode plasmonic tweezers.
    Aqhili A; Darbari S
    Sci Rep; 2021 Oct; 11(1):20656. PubMed ID: 34667247
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasmonic optical trap having very large active volume realized with nano-ring structure.
    Kang Z; Zhang H; Lu H; Xu J; Ong HC; Shum P; Ho HP
    Opt Lett; 2012 May; 37(10):1748-50. PubMed ID: 22627558
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low-power nano-optical vortex trapping via plasmonic diabolo nanoantennas.
    Kang JH; Kim K; Ee HS; Lee YH; Yoon TY; Seo MK; Park HG
    Nat Commun; 2011 Dec; 2():582. PubMed ID: 22158437
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication and Operation of a Nano-Optical Conveyor Belt.
    Ryan J; Zheng Y; Hansen P; Hesselink L
    J Vis Exp; 2015 Aug; (102):e52842. PubMed ID: 26381708
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optical trapping of nanoparticles.
    Bergeron J; Zehtabi-Oskuie A; Ghaffari S; Pang Y; Gordon R
    J Vis Exp; 2013 Jan; (71):e4424. PubMed ID: 23354173
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasmonic nano-tweezer based on square nanoplate tetramers.
    Jin Q; Wang L; Yan S; Wei H; Huang Y
    Appl Opt; 2018 Jul; 57(19):5328-5332. PubMed ID: 30117824
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Laser trapping of colloidal metal nanoparticles.
    Lehmuskero A; Johansson P; Rubinsztein-Dunlop H; Tong L; Käll M
    ACS Nano; 2015; 9(4):3453-69. PubMed ID: 25808609
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Towards nano-optical tweezers with graphene plasmons: Numerical investigation of trapping 10-nm particles with mid-infrared light.
    Zhang J; Liu W; Zhu Z; Yuan X; Qin S
    Sci Rep; 2016 Dec; 6():38086. PubMed ID: 27905527
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New opto-plasmonic tweezers for manipulation and rotation of biological cells--design and fabrication.
    Miao X; Lin LY
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():4318-21. PubMed ID: 17946622
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical trapping of single nano-size particles using a plasmonic nanocavity.
    Zhang J; Lu F; Zhang W; Yu W; Zhu W; Premaratne M; Mei T; Xiao F; Zhao J
    J Phys Condens Matter; 2020 Aug; 32(47):. PubMed ID: 32870814
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting.
    Roxworthy BJ; Ko KD; Kumar A; Fung KH; Chow EK; Liu GL; Fang NX; Toussaint KC
    Nano Lett; 2012 Feb; 12(2):796-801. PubMed ID: 22208881
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stand-off trapping and manipulation of sub-10 nm objects and biomolecules using opto-thermo-electrohydrodynamic tweezers.
    Hong C; Yang S; Ndukaife JC
    Nat Nanotechnol; 2020 Nov; 15(11):908-913. PubMed ID: 32868919
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink.
    Wang K; Schonbrun E; Steinvurzel P; Crozier KB
    Nat Commun; 2011 Sep; 2():469. PubMed ID: 21915111
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tunable plasmonic tweezers based on graphene nano-taper for nano-bio-particles manipulation: numerical study.
    Khorami AA; Barahimi B; Vatani S; Javanmard AS
    Opt Express; 2023 Jun; 31(13):21063-21077. PubMed ID: 37381215
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theoretical Study on Symmetry-Broken Plasmonic Optical Tweezers for Heterogeneous Noble-Metal-Based Nano-Bowtie Antennas.
    Du G; Lu Y; Lankanath D; Hou X; Chen F
    Nanomaterials (Basel); 2021 Mar; 11(3):. PubMed ID: 33803040
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nano-optical conveyor belt with waveguide-coupled excitation.
    Wang G; Ying Z; Ho HP; Huang Y; Zou N; Zhang X
    Opt Lett; 2016 Feb; 41(3):528-31. PubMed ID: 26907415
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tunable optical forces enhanced by plasmonic modes hybridization in optical trapping of gold nanorods with plasmonic nanocavity.
    Huang WH; Li SF; Xu HT; Xiang ZX; Long YB; Deng HD
    Opt Express; 2018 Mar; 26(5):6202-6213. PubMed ID: 29529812
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In-plane trapping and manipulation of ZnO nanowires by a hybrid plasmonic field.
    Zhang L; Dou X; Min C; Zhang Y; Du L; Xie Z; Shen J; Zeng Y; Yuan X
    Nanoscale; 2016 May; 8(18):9756-63. PubMed ID: 27117313
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.